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Lecture 1

Introduction

f = xn + an−1xn−1 + . . . + a1x + a0 ∈ Q[X]polynomial.
Q: ”What are its roots?

n = 1 thenx − a↔ x = a

n = 2 thenx2 + px + q⇔ x = −p
2 ±
√
(p
2
)2 − q

n = 3 thenx3+px2+qx+r. We see that if we replacex byx− p
3 . Then we getx3+px+q.

Discriminant∆ = ( q2) + (
p
3
)3. Then one root is 3

√
− q

2 +
√
∆ + 3

√
− q

2 −
√
∆

This is calledCardano formula

n = 4 ”solvable by radicals”,i.e. there is a formula only involving+,−, /, n
√
...

n ≥ 5 then is not solvable by radicals in general. This is Abel Raffini Theorem
Galois explained this in a conceptial way, also over general ground fields. Made
shift from polynomials to field extensions.

Basic definition

K field
K[x] = {a0 + a1x + . . . + anxn∣n ≥ 0, ai ∈K}
K(x) = Quot(K[x]) = {f(x)g(x) ∣f, g ∈K[X], g ≠ 0}

prime field of a field smallest subfield ofK =
⎧⎪⎪⎨⎪⎪⎩

Q char(K) = 0
Fp char(K) = p > 0

L/K field extensionL ⊇K.
[L ∶K] = dimKLwhich isdegree ofLoverK
L/K finite iff [L ∶K] <∞. Note that [Q(

√
2) ∶ Q] = 2 <∞ and [R ∶ Q] =∞.

Tower law:L/M/K then [L ∶K] = [L ∶M] ⋅ [M ∶K].
A ⊆ L SUBSET then

� K[A] = smallest subring ofL containing the fieldK and the setA.

� K(A) = smallest subfield ofL containing the fieldKK and the setA.
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a ∈ Lalgebraic overK if ∃0 ≠ f ∈K[X] s.t. f(a) = 0.
If a ∈ Ltranscedental overK if a ∈ L not algebraic overK.
Note thatQ(

√
π)/Q is transcedental andQ(π)/Q is transcedental butQ(

√
π)/Q(π) is

algebraic.
0 ≠ f ∈ K[X]minimal polynomial of a ∈ L overK if f is monic and has minimal
degree. (irreducible and unique).

From Algebraic structuresK[X]→K[a]withx↦ awhere a algebraic.
ThenK[X]/(f) ∼Ð→K[a] =K(a)where f minimal polynomial.
Then [K[a] ∶K] = deg(f),K− basis of k[a] ∶ 1, a, a2, . . . , adeg(f)−1.

L/K algebraic⇔ ∀a ∈ L are algebraic overK.
L/K transcendental ifL/K is not algebraic.

Proposition:

L/K is finite⇒ L/K algebraic.L
fÐ→ L′ -homomorphism iff f ∣K = idK .

Proof:
Arbitraryx ∈ L. Takex0, x1, . . . , x[L∶K] areK− lin. dep. Here we use that
[L ∶ K] < ∞. Therefore we see that ∑

i=0
aixi = 0 so there exists a minimal polynomial.

SoL/K is algebraic.

The converse is false:Q(
√
2, 4
√
2, 8
√
2, . . .]/Q is infinite and algebraic.

a ∈ LwhereL/K transcendental thenK[a] ≅K[X]polynomial ring andK(a) ≅K(X)field
of rational functions overK.

L,L′ field extensions of fieldK then aK homomorphismL → L′ is field homomor-
phismϕ ∶ L→ L′ s.t.ϕ∣K = idK .
K isomorphismbijectiveK- homomorphism. L,L′ areK− isomorphic (L ≅K L′) if− isomorphismL→
L′ exists. K− automorphism ifK- isomorphism withL = L′.
Example:
τ ∶ C → Cwith z ↦ z. R− automorphism isAutR(C) = {idC, τ}butAut(C) is uncount-
able.

K field and 0 ≠ f ∈K[X] thenL/K splitting field of f over k iff

i f =
n

∏
i=1
(x − αi) ∈ L[x] splits completly into linear factors

ii L =K(α1, . . . , αn).
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Proposition 1.1 (I.3.2)

1)∃ splitting fieldL/K&[L ∶K] ≤ deg(f)!
2)A splitting fieldL/K is unique up toK − isomorphism (Prop 6.5/AS Top III.5.4)

Proof:

1. Induction on degree of f . If deg(f) = 1, thenL = K is splitting field. Other-
wise take irreducible fact f1∣f thenK[X]/(f1) is a field extension ofK of de-
gree deg(f1) ≤ deg(f) and f1(x) = 0.
Now do induction with f

(x−x) ∈ L[X].

2. For induction prove slightly more general statement. ϕ0 → ϕ0 ∶ K1[X]
∼Ð→

K2[X]with∑aixi ↦ ∑ϕ0(ai)xi.
K1

∼Ð→ K2 byϕ0 s.t. 0 ≠ f1 ∈ K1[X] → f2 = ϕ0(f1) ∈ K2[X]. ThenLi/Ki splitting
fields of fi for i = 1,2. Then there existsϕ s.t.L1

∼Ð→ L2 byϕ,Which implies unique-
ness by takingK1 =K2 =K,ϕ0 = idK .

We proof this by induction.
If f1 constant, takeLi =Ki.
Otherwise takeϕ1∣f1 irreducible. Since isomorphic withϕ0we see thatϕ2 = ϕ0(ϕ1) ∈
K2[X].
Li/Ki splitting field: ∃α ∈ L1 s.t.ϕ1(α) = 0,and∃β ∈ L2 s.t.ϕ2(β) = 0. So we see
thatK1[α]

∼Ð→K2[β] ∶ ∑aixi ↦ ∑ϕ0(ai)βi.
By induction can extendϕ1 toϕ ∶ L1

∼Ð→ L2.

Example:
K = Q, f = x3 − 2, splitting fieldQ( 3

√
2)/Q. Then f = (X − 3

√
2) ⋅ f2 ∈ Q( 3

√
2)[X]. Note

that f2 has roots inC ∖RwhileQ( 3
√
2) ⊆ R.

Now note that the other roots ofx3 − 2 are ζ3 3
√
2, ζ23

3
√
2. So thenQ( 3

√
2, ζ3

3
√
2)/Q is a

splitting field of degree 3 ⋅ 2 = 3!.
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Lecture 2

Normal extensions

L/K normal iff∀f ∈K[x] that has root inL ∶ f splits overL iff∀α ∈ L ∶minpolK(α) splits
overL.

H ≤ G subgroup and [G ∶H] = 2⇒H ⊴ G i.e.H = gHg−1 for all g ∈ G.
SplM(α) is splitting field ofα overM .

Theorem 2.1 (Bianchi 3.6):

L/K finite then following equivalent ∶
1)L/K normal

2)L = splK(g) for some g ∈K[x] (Thm 2.1/Bianchi 3.6)

Proof:

1⇒ 2 L = K(α1, . . . , αn) sinceL/K finite. Def. fi ∶= minpolK(αi)which splits overL,

since normal. Define g ∶=
n

∏
i=1
fi. ThereforeL = K(α1, . . . , αn) ⊆ SplK(g) ⊆ L. For

this we must have equality throughout

2⇒ 1 α ∈ L, f ∶= minpolK(α),M ∶= SplL(f) ⊇ L. WantM = L. Letβ ∈M ∶ f(β) = 0.
From lecture 1:

Hence [L ∶ K] = [L(β) ∶ K], henceβ ∈ L. ThereforeM ⊆ L. Since we de-
finedM in such a way thatM ⊇ L, we see that we getL =M .

Example:
Q(
√
2,
√
3) = SplQ((X2 − 2)(X2 − 3))/Q normal

SplQ(X3 − 2) = Q( 3
√
2, ζ3)/Q normal

Fp(t1/p) = SplFp(t)(Xp − t)/Fp(t) normal.
Warning:normality is not transitive, i.e. if we haveL/M normal, M/K normal then it
does not imply thatL/K is normal.
Warning:DistinguishAutK(L) as field extensions or as vector space.
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Separable extensions

1. 0 ≠ f ∈K[x] separable iff f hs no multiple roots in SplK(f)

2. α ∈ L separable overK iffminpolK(α) separable.

3. L/K separable iff allα ∈ L separable overK

Non-example:

� Fp(t1/p)/Fp(t) not separable sinceXP − t = (X − t1/p)p

� [L ∶K] = 2 not separable iff char(K) = 2 andL =K(
√
d)with d ∈K ∖K◻

whereK◻ = {k ∈K ∣∃z ∈ Z; z2 = k}

This is becauseα ∈ L thenminpolK(α) = (X −α)(X −α) =X2 −pX + qwhere p =
α + α, q = αα. Sinceα not separable overK iffα = α therefore p = 2α ∈ L.

Example:
X2 +X + 1 ∈ F2[X] irreducible and separable.

K field, then

(−)′ ∶K[X]→K[X] s.t. f =∑
i≥0
aix

i ↦ f ′ ∶=∑
i≥1
iaix

i−1

Proposition 2.2

f, g ∈K[X] then:
1)formal derivative isK − linear (as vector space)

2)Leibniz rule: (fg)′ = f ′g + fg′

3) rootα of f is simple: (#roots(α) = 1 iff f ′(α) ≠ 0 (Prop 2.2)

Example:
(Xp − t)′ = pXp−1 = 0 if char(K) = p > 0.

K isperfect iffK =Kp ∶= {xp ∶ x ∈K} iff frobenius norm is surjective.

Theorem 2.3 (Bianchi 4.4)

L/K finite is separable if

1)char(K) = 0,or
2)char(K) = p > 0andp /∣ [L ∶K]or
3)char(K) = p > 0andK =Kp (Thm 2.3/Bianchi 4.4)
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Proof:
α ∈ L, f =minpolK(α). β ∈M ∶ f(β) = 0, f =minpolK(β).
Ifβ not simple root⇒ f ′(β) = 0 hence f ′ = 0 so f irreducible.
If char(K) = p⇒ f ≡ a0 contradiction.
char(K) = p⇒ f = g(xp) hence p∣[K(α) ∶K]∣[L ∶K].
K =Kp, f = g(xp) = h(x)p reducible, contradiction.

Therefore the following Corollary:

L/K finite only inseparable if char(K) = p > 0 is not perfect&p∣[L ∶K] (Cor 2.4)

Proposition 2.5 (transitivity of separability)

L/M/K then following equivalent

1)L/K separable

2)L/M &M/K separable (Prop 2.5)
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Lecture 3

K ⊆ L,M thenHomK(L,M) = {ϕ ∶ L→M field hom. s.t.ϕ∣K = idK}

Properties of separability

L/K is normal field extension iff∀α ∈ L theminpolK(α) splits completly overL
L/K is separable field extension iff∀α ∈ L, theminpolK(α) does not have mul-
tiple roots in a splitting field of f .

ExampleL/K is separable if char(K) = 0 or char(K) = p > 0 andK is perfect,i.e.K =
Kp = {ap∣a ∈K}

Note that this is not an iff statement. As inFpn(t)/Fp(t) of degreen, is separable,
whileFp(t) is not perfect.

Lemma 3.1:

K(α)/K finite simple (gen. by 1 element) field extension,M/K some extension

1natural bijectionHomK(L(α),M)
∼Ð→ {roots off inM}with f =minpolK(α)

∼Ð→ is canonical hom. withHomK(K(α),M) ∋ φ↦ φ(a)
2#HomK(K(α),M) ≤ deg(f) = [K(α) ∶K] <∞
3 f separable, splits overM ⇒#HomK(K(α),M) = [K(α) ∶K] (Lem 3.1)

Proof of 1:

HomK(K(α),M)
∼Ð→ HomK(K[x]/f,M)

∼Ð→ {g ∶ HomK(K[x],M)∣g(f) = 0}
↓∼

K[x]/(f)

Thereforeβ ∈M ∣f(β) = 0, so f ⊆ ker(g)⇔ x↦ root of f inM .
2,3 direct consequence of 1.
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Proposition 3.2:

L/K finite ,M/K some field extension.

1)#HomK(L,M) ≤ [L ∶K] <∞
2)L/K inseparable then#HomK(L,M) < [L ∶K]
3)L/K separable ⇒ ∃M s.t.#HomK(L,M) = [L ∶K]

soM separates roots ofminpols ofα ∈ L (Prop 3.2)

Proof:

1. Induction on [L ∶K]. Base case:L =K then okay. Letα ∈ L ∖K. By Lemma
#HomK(K(α),M) ≤ [K(α) ∶ K]. By induction everyσ ∶ K(α) ↪ M has at
most [L ∶K(α)] extensions toL↪K.
Therefore#HonK(L,M) ≤ [L ∶K(α)][K(α) ∶K] = [L ∶K].

2. Takeα ∈ L inseparable overK. By Lemma, we see then
#HomK(K(α),M) < [K(α) ∶K].Hence from 1, we see that
#HomK(L,M) < [K(α) ∶K][L ∶K(α)] = [L ∶K].

3. L =K(α1, . . . , αn) and let fi ∶=minpolK(αi), separable overK.
LetM ′ split all fi. Claim thisM works (i.e.M =M ′).
Proof by induction. By Lemma we see forn = 1, we have f1which splits overM ,
so#HomK(K(α1),M) = [K(α1) ∶K].
∀σ ∶ K(α1) ↪ M count number of extensions. σ̃ ∶ L ↪ M . Claim: Exactly
[L ∶ K(α1)] extensions. Extension means commutative diagram. So if iota ∶
K(α1)→ L,σ ∶K(α1)→M and σ̃ ∶ L→M thenσ = σ̃ ○ ι.
Need to verify htat gi ∶=minpolK(α1)(αi)i≥2 splits underσ inM in order to apply
the induction hypothesis. gi∣fi ∈K[X] thenσ(gi)∣σ(fi) = fi ∈K[X].
fi splits overM hence alsoσ(gi). I.e.., the induction hypothesis is satisfied,
soM =M ′. Therefore#homK(L,M) ≥ [L ∶K(α)] ⋅ [K(α) ∶K] = [L ∶K]. Since
we already had#HomK(L,M) ≤ [L ∶K]we see that#HomK(L,M) = [L ∶K].

Theorem 3.3:

L/K finite soL =K(α1, . . . , αn) ifαi separable overK ⇒ L/K separable (Thm 3.3)

Proof:
From (Prop 3.2).3 we see that∃M/K s.t.#HomK(L,M) = [L ∶K]
,therefore by (Prop 3.2).2L/K is separable.
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Corollary:
A splitting field of a separable polynomial f is separable.
Proof:
αi root of f , and fi ∶=minpolK(αi)∣f . Then since f sep., we see that fi sep.
So by (Thm 3.3)L/K sep.

L/K finite isGalois iff /K is normal and sep. (Note that this is also Bianchi 5.10)
We can define it for alg. field extensions.

Proposition 3.4 (Bianchi 5.4):

L/K finite then following equivalent

1)L/KGalois

2)L splitting field of sep polynomial overK (Prop 3.4/Bianchi 5.4)

Proof:

1⇒ 2 Normality criterion⇒ L = SplK(f), f ∈K[x]. Now assume f =
n

∏
i=1
fiwhere fi irreducible

and square free factorization. L = splK(f) so split over l,, so fi have root inL.

Since sep. we see fi have only simple roots, we see that since f =
n

∏
i=1
fi is sep.

2⇒ 1 L = Splk(f)⇒ L/K is normal by normal criterion.
By Corollary above, we see that sinceL = splK(f)we have sep.

Lemma 3.5:

L/K algebraic field extension⇒ HomK(L,L) = AutK(L) (Lem 3.5)

Proof:
Every field hom. is injective. So only have to show thatHomK(L,L) is surjective.
[L ∶K] <∞we see that it is already clear since tehn surjective automatically follows.
So we just need to reduce to finite extensions.
Letϕ ∈ HomK(L,L). Letα ∈ L. Then sinceL/K is algebraic, ∃0 ≠ f ∈ L[x] ∶ f(α) = 0.
ThenVL(f) = {β ∈ L∣f(β) = 0}which is the vanishing set of f inL. We see that this
set is finite.
Claim:ϕ(VL(f)) ⊆ VL(f).
ϕ ∶ VL(f) → VL(f) is injective becauseϕ isV L(f) finite, so thereforeϕ ∶ VL(f)

∼Ð→
VL(f). Therefore∀α ∶ ϕ ∶ L→ L surjective so automorphism.

Let f =
n

∑
i=0
aixi thenϕ(f(β)) = g (

n

∑
i=0
αiβi) =

n

∑
i=0
ϕ(αi)ϕ(β)i. Sinceϕ∣K = idK we see

thatϕ(f(β)) =
n

∑
i=0
αiϕ(β)i soϕ(β∈VL(f).
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Lecture 4

VL(f) = {β ∈ L∣f(β) = 0}.
Note:
AnyM/K s.t.∀α ∈ L ∶minpolK(α) splits without multiple factors, satisfies
#HomK(L,M) = [L ∶K].
We see that in the lecture Lemma 4.1, is in fact (Lem 3.5)

Properties Galois extensions

Proposition 4.2 (Bianchi 5.8)

L/K finite then following equivalent

1)L/KGalois

2)#Gal(L/K) =#AutK(L) = [L ∶K] (Prop 4.2/Bianchi 5.8)

Proof:

1⇒ 2 note that [L ∶K] prop 1 L3= #HomK(L,L)
L4.1= #AutK(L).

2⇒ 1 TBS:∀α ∈ Lwe must have f = minpolK(α) splits without multiple factors
overL⇔#VL(f) = deg(f) = [K(α) ∶K]. Note that#VL(f) ≅#HomL(K(α), L).
Take arbitraryσ ∈ HomL(K(α), L). Thenσ extends to at most [L ∶K(α)] exntesions
toL. #HomK(L,L) =#AutK(L) = [L ∶K].
Note that#HomK(L,L) = #VL(f)[L ∶ K(α)] ≤ deg(f) ⋅ [L ∶ K(α)] = [K(α) ∶
K][L ∶K(α)] ≤ [L ∶K].
Since [L ∶K] = [L ∶K]we get that#VL(f) = deg(f) = [K(α) ∶K]which implies
that∀α ∈ L,minpolK(α) splits into linear terms without multiplicity inL.

ForL/K galois,Galois groupGal(L,K) = AutK(L)with composition as group low.
SoGal(L,K) = {σ ∶ L → L∣σ∣K = idK} since extension is finite, we see that group is
finite, and#Gal(L/K) = [L ∶K]

Galois group of separable polynomial, is the galois group of a splitting field.
If 2 field extensionsL/L,L′/K withϕ ∶ L→ L′ isomorphic, thenϕ∗Gal(L/K) ∼Ð→ Gal(L′/K)
We see that g∗(σ) ∶ L′

ϕ−1,∼ÐÐ→ L
σ,∼Ð→ L

ϕ,∼Ð→ L′ soL′ → L′ is isomorphic.

Lemma 4.3 (Bianchi 5.5):

L/K finite Galois ext.,K ⊂ F ⊂ L interm. field ext.⇒ L/F Galois
(Lem 4.3/Bianchi 5.5)

1B 2023-2024 (S4349113) Page 12



Advanced Algebraic structures, University of Groningen H.M. (Lenie) Goossens

Do not really understand what happens in next section:
L/K arbitrary field extensions, thenAutK(L) = {σ ∶ L

∼Ð→ L s.t.σ∣K = idK}
If we haveL/M/K thenAut(L) = σ∣M = id∣M =⇒ σ∣K = idK .
AutM(L) ≤ AutK(L)

� Therefore well-defined map {M ∣L ⊇M ⊇K}→ {subgroups of AutK(L)} s..t.M ↦
AutM(L).

� IfM ′ ⊆M thenAutM(L) ≤ AutM ′(L)
Note that this map is bijective ifL/K finite Galois with inverse function:
H ≤ Gal(L/K)↦ LH = {α ∈ L∣σ(α) = α,∀σ ∈H}.

� M = L thenAutL(L) = {idL}.

� M =K thenAutK(L) is full group.

We want thatLAutK(L) =K. We need to useL/K Galois, because otherwise it is false.

IfL = Q( 3
√
2)/Q is not normal, AutQ(L) = {σ ∶ L

∼Ð→ L∣σ∣L = idL} therefore we see

thatσ( 3
√
2) = ζ i3

3
√
2. Note that sinceσ( 3

√
2) ∈ L ⊆ Rwe see thatσ( 3

√
2) = 3

√
2. There-

foreσ fixes a generator 3
√
2 ofL thereforeσ = idL thereforeAutQ(L) = {id} thereforeLAutQ(L) =

Lid = L ⊋ ...
IfL = Q( 4

√
2)/Q thenσ(

√
2) = σ( 4

√
2
2) = σ( 4

√
2)2 = (± 4

√
2)2 =

√
2 therefore we see ...

L/K not separabe soL = Fp(t1/p)/Fp(t) =K, whereL = SplK(Xp−t)withσ ∈ AutK(L)maps
roots ofXp − t to roots. There is exactly one rootXp − t = (X − t1/p)p. There-
foreAutK(L) = {idL}⇒ LAutK(L) = L ⊋K. Corollary 4.4 (Bianchi 5.9):

L/K finite then following equivalent:

1)L/KGalois

20LAutK(L) =K (Cor 4.4/Bianchi 5.9)

Proof:

1⇒ 2 ∀α ∈ L,∀σ ∈ AutK(L), σ(α) = α thereforeα ∈K.
Letα ∈ LAutK(L)⇒ AutK(L) ≤ AutK(α)(L).
SinceK ⊆K(α) by the inclusion rev. We haveAutK(α)(L) ≤ AutK(L)
soAutK(α)(L) = AutK(L)
Therefore [L ∶K(α)] =#AutK(α)(L) =#AutK(L) = [L ∶K].
Therefore [K(α) ∶ K] = 1 by tower law soα ∈ K. Which is what we wanted to
show.
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2⇒ 1 G = AutK(L). Show∀α ∈ L, we have f = minpolK(α) splits into multiple
factors inL.
Define g ∶= ∏

σ∈G
(X − σ(α)) ∈ L[X].

Claim: g ∈K[X]whereK = Lg.
∀τ ∈ Gwe have τg = ∏

σ∈G
(X − τσ(α)) = ∏

σ∈τG
(X − σ(α)) = ∏

σ∈G
(X − σ(α)) = g.

i.e.,τ permutes the roots of g, hence it fixes the coefficients, hence

g ∈ LG[x] 2= K[X]. If,σ = idwe get g(α) = 0. This is because one of the terms
in the definition of g is equal to zero, so the whole product is equal to zero,
so g(α) = 0. So g ∈K[X] implies thatminpolK(α)∣g so f splits into linear factors
inL henceL/K is Galois.
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Lecture 5

L/K finite is galois⇔ normal+separable⇔ L = SplK(f), f ∈K[x] separable⇔#AutK(L) =
[L ∶K]⇔ LAutK(L) = k.
In this case:Gal(L/K) = AutK(L).

Lemma 5.1 (Top II.2.2)

L/K finite field extension s.t.#{M ∶ L/M/K} <∞⇒ L simple,i.e.∃α ∈ L s.t.L =K(α)
(Lem 5.1/Top II.2.2)

Proof:

Case 1 K finite
L/K
⇒ L finite⇒ L× is cyclic (i.e.L = ⟨α⟩)⇒ L =K(α) simple.

Case 2 L =K(α1, . . . , αn) sinceL/K finite.

Prove by induction thatK(α,α′) simple.
Ifn = 1, we see thatL =K(α1) so already simple.
#{K(α + λα′)∣λ ∈ K} < ∞ since subfield ofL/K. WhereK infinite. So pi-
geon hole principle: ∃λ ≠ λ′ ∈ K ∶ K(α + λα′) = K(α + λ′α′) =∶ M . There-
foreα + λα′, α + λ′α′ ∈ M ⇒ (λ − λ′)α ∈ M . Sinceλ ≠ λ′we see thatλ − λ′ ≠
0 soα′ ∈M . So thenα = (α + λα′) − λα′ ∈M .
ThereforeK(α,α′) ⊇ M ∋ α,α′ henceK(α,α′) = M = K(α + λα′). Therefore
base case holds).
For the induction step, assume thatK(α1, . . . , αn−1) = M̂(α̂). ThereforeK(α1, . . . , αn) =
M̂(α̂, αn) =M(α). By using that we proved it for 2 elements.

Galois correspondence

Galois correspondence 5.2 (Bianchi 6.3):

L/K finite Galois has inclusion-reversion bijection:

{M ∶ L/M/K}

α∶M↦Gal(L/M)ÐÐÐÐÐÐÐÐ→
β∶H↦LH

←ÐÐÐÐ {H ≤ Gal(L/K)}
α injective, βsurjective (Gal Cor 5.2/Bianchi 6.3)

Observation:
Gal(L/K) finite, therefore finitely many subgroupsH, therefore {H ≤ Gal(L/K)}finite.
SInceα injective, we see that {M ∶ L/M/K} is finite.
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Proof:
We only have to prove that∀H ≤ Gal(L/K)we haveGal(L/LH) =H.
By (Prop 4.2/Bianchi 5.8)#Gal(L/K) = [L ∶ K] < ∞. Sinceα injective,L/K only fin.
many subfields because the finite groupGal(L/K) has only finitely many subfields.
Therefore by (Lem 5.1/Top II.2.2),L =K(α) is simple.
Trick f ∶= ∏

σ∈H
(X − σ(α)) ∈ L[X]

∀τ ∈H ∶ τf = f where τf = ∏
σ∈H
(X − τσ(α)) = ∏

σ̃∈τH
(X − σ̃(α)) = f sinceH is a group.

Therefore coeffs of f are inLH so f ∈ LH[X]. Therefore#H = deg(f) ≥ [L ∶ LH] sinceL =
SplLH(f). Note that [L ∶ LH] = #Gal(L/LH) sinceL/LH is Galois. So far there-
fore#H ≥#Gal(L/LH).
ButH ≤ Gal(L/LH) becauseH fixesLH by definition ofLH . SO#H ≤ #Gal(L/LH).
But we had#Gal(L/LH) ≤#H so#H =#Gal(L/LH). We also haveH ≤ Gal(L/LH) but
since cardinality of both groups are the same, we see thatH = Gal(L/LH).

Lemma 5.3 (Bianchi 6.4)

σ ∈ Gal(L/K)↝ σ(M) ∶= {σ(α)∣α ∈M} ⊆ Lfield

⇒Gal(L/σ(M)) = σGal(L/M)σ−1 ∶= {στσ−1∣τ ∈ Gal(L/M)} (Lem 5.3/Bianchi 6.4)

Proof:
Let τ ∈ Gal(L/K) then τ ∈ Gal(L/σ(M))
iff τ(σ(α)) = σ(α) for allσ(α) ∈ σ(M) so∀α ∈M .
Iffσ−1τσ)(α) = α,∀α ∈M .
Iffσ−1τσ ∈ Gal(L/M) iff τ ∈ σGal(L/M)σ−1.

Proposition 5.4

L/K finite Galois withL/M/K thenM/K is normal (so Galois) iff

N ∶= Gal(L/M) ⊴ G ∶= Gal(L/K)
thenGal(L/K)/Gal(L/M) ∼Ð→ Gal(M/K) s.t.σN ↦ σ(M)well def. group isom.

(Prop 5.4)

Proof:
N ⊴ G normal

def⇔ σNσ−1 = N,∀σ ∈ G. Iff,Gal(L/σ(M)) = Gal(L/M),∀σ ∈ G.
Iffσ(M) = M by Gall. correspondence, iffσ(M) ⊆ M since we have a homomor-
phism fromσ(M)→M which is an automorphism (since finite field extension), there-
foreσ(M) ⊆M ⇒M ⊆ σ(M), soM = σ(M).

1B 2023-2024 (S4349113) Page 16



Advanced Algebraic structures, University of Groningen H.M. (Lenie) Goossens

To showσ(M) ⊆M,∀σ ∈ G iffM/K normal:

⇐. AssumeM/K normal. Letα ∈ M,σ ∈ G, f ∶= minpolK(α), then f(σ(α))
σ∣K=idK=

σ(f(α)) = σ(0) = 0
SinceM/K normal, f splits overM , soσ(α) ∈M .
⇒Assumeσ(M) ⊆M,∀σ ∈ G. Letα ∈M,g ∶= ∏

σ∈G
(X − σ(α)). Sinceσ(α) ∈M , we see

that g ∈M[X]. Since τg = g,∀τ ∈ G, we see that g ∈K[X] thereforeminpolK(α)∣g.
Since g splits overM , we see thatminpolK(α) splits overM . HenceM/K is normal.
So we only need to check the isomorphism. Defineϕ ∶ Gal(L/K)→ Gal(M/K)withσ ↦
σ∣M . SinceM/K normal, we see well-defined homomorphism, becuaseσ(M) = M .
We see that ker(ϕ) = {σ ∈ Gal(L/K)∣σ∣M = idM} = Gal(L/M). By using homomor-
phism theorem of groups, we see thatGal(L/K)/ker(ϕ) → Gal(M/K) is injective,
soψ ∶ Gal(L/K)/Gal(L/M)→ Gal(M/K) is injective.
To proveψ is isomorphism, it is enough to prove that#(Gal(L/K)/Gal(L/M)) =
#Gal(M/K). Note that [L ∶ K][L ∶ M] = [M ∶ K] by tower law. soψ indeed iso-
morphism. By Tower law, we see surjective, so thereforeGal(L/K)/Gal(L/M) →
Gal(M/K) is indeed isomorphism.

Lemma 5.5:

L/K finite sep.⇒ ∃L̃/L s.t. L̃/K finite Galois (Lem. 5.5)

Proof:
L/K finite thenL(α1, . . . , αn9. fi = minpolK(αi) separable. WLOG, pairwise co-
prime. (otherwise delete multiple ones, since either equal or coprime (Note irreducib-
lity since minimal polynomial).). τ = SplK(∏ fi) ⊇ L separable, normal and finite.

Theorem 5.6 (Bianchi 6.5):

L/K fin. separable⇒ ∃α ∈ L s.t.L =K(α) so simple (Thm 5.6/Bianchi 6.5)

Proof:
By (Gal Cor 5.2/Bianchi 6.3) we see that it is sufficient to show thatL/K has only
finitely many subfields. By (Lem. 5.5) L̃/L/K finite and Galois, therefore L̃/L has
finitely many subfields, soL/K has only finitely many subfields.

Example:
Char(K) ≠ 2 thereforeL/K quadratic has the formL = K(

√
a)with a ∈ K ∖ K◻ =

K ∖ {b2∣b ∈K}. Note thatL = SplK(X2 − a)normal and separable, since if f = X2 − a,
then (f, f ′) = (X2 − a,2X) = 1 forX ≠ 0. Therefore#Gal(K(

√
a)/K) = [K(

√
a ∶

K] = 2. Denote the zeros of a polynomial f overL byVL(f). Therefore we see
thatσ(VL(X2 − a)) = VL(X2 − a) = {±

√
a}.
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Lecture 6

Lemma 6.1
Missing

Example 6.2 (6.6 Bainchi)
L = Q(

√
2,
√
3). Claim:Gal(L/Q) ≅ (Z/2Z)2.

ConsiderL1 ∶= Q(
√
2), L2 ∶= Q(

√
3).

Claim:L1 ≠ L2. OtherwiseGal(L1/Q) = Gal(L2/Q) = {idL2 , σ)}.
So thenσ ∶

√
2 ↦ −

√
2,
√
3 ↦ −

√
3. Which would imply thatσ(

√
2
√
3) =

√
2
√
3. So

then
√
6 ∈ Qwhic h is a contradiction, soL1 ≠ L2.

WE see that we haveQ(
√
2,
√
3)/Q(

√
2)/Q. IfQ(

√
2,
√
3) ∶= L = L1 ⋅L2 then [L ∶ Q] =

2 ⋅ 2 = 4. ThereforeGal(L/Q) ≅ Z/4Z orGal(L/Q) ≅ (Z/2Z)2. Note thatZ/4Zhas ex-
actly 1 subgroup, whileGal(L/Q) has more then 1 so contradiction. ThereforeGal(L/Q) ≅

(Z/2Z)2. Note that (Z/2Z)2 has 3 proper subgroups: ⟨(1
0
)⟩ , ⟨(0

1
)⟩ , ⟨(1

1
)⟩.

What is τ, σIfL3 = L⟨στ⟩ then (στ)(
√
6) = σ(

√
3(−
√
3)) =

√
6 so then

√
6 ∈ L3 so there-

fore [L3 ∶ Q] = 2.

Example 6.3
L ∶= SplQ(X3 − 2). We see that 2 = [Q(ζ3) ∶ Q] and 3 = [Q( 3

√
2) ∶ Q)]. Both di-

vide [L ∶ Q]. Note thatGal(L/Q)↪ S3 by Lemma 6.1, therefore#Gal(L/Q)∣3! = 6
Proper subgroups ofS3 are ⟨(1,2,3)⟩ = {1, (1,2,3), (1,3,2)} and ⟨(12)⟩, ⟨(13)⟩, ⟨(23)⟩.
Those subgroups are not normal. Therefore (Q( 3

√
2))/Q, (Q( 3

√
2)ζ23)/Q, (Q(

3
√
2)ζ23)/Q are

not normal.

Cyclotomic fields

Proposition 6.4/Bianchi 7.3

Char(K) /∣ n⇒Xn − 1 ∈K[X] separable (Prop 6.4/Bianchi 7.3)

Proof: (Xn − 1)′ = nXn−1 ≠ 0, where (Xn − 1) ≠ 0 andnXn−1 ≠ 0. Therefore (Xn −
1, nXn−1) = 1 soXn − 1 separable.

Assume char(K) /∣ n.
Definition 6.5
L field, µn(L) ∶= {ζnL×∣ζn = 1} group ofn− th roots of unity inL.
proposition 6.6/Top III.5.4

µn(L) is finite cyclic (Prop 6.5/AS Top III.5.4)
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Example:

L = C thenµn(C) = {e
2πik
n ∣0 ≤ k < n}.

Definition 6.6
ζn ∈ µn(L)primitive iff ord(ζn) = n iff ⟨ζn⟩ = µn(L).
K(µn) ∶= SplK(Xn − 1). Note thatK(µn) =K(ζn) iff ζn is primitive.
Example:
ζn ∈ Fq⇔ ord(ζn)∣(q − 1) =#F×q

Property:
(ζn primitive then ζan primitive) iff (a,n) = 1.
Example:
Q(ζ3) = Q(

√
−3) since ζ33 − 1 = 0 but ζ3 − 1 ≠ 0, therefore root of x3−1

x−1 = x2 +x+ 1. Roots
are −1±

√
12−4⋅1
2 = −1±

√
−3

2 .

Lemma 6.7/Bianchi 7.8

ζn primitive n-th root of unityL ∶=K(ζn),G ∶= Gal(L/K)

⇒
⎧⎪⎪⎨⎪⎪⎩

(1) σ ∈ G→ σ(ζn) = ζan with (a,n) = 1
(2) ∀ζ ∈ µn(L), σ(ζ) = ζa

(Lemma 6.7/Bianchi 7.8)

Proof: ζ ∈ Gmaps roots ofxn − 1 to roots, soσ(ζn) = ζan for some a ∈ Z since ⟨ζn⟩ =
µn(L).
σ ∈ AutK(L) thereforeσ∣µn(L) ∈ Aut(µn(L)) thereforeσmaps generators ofµn(L) to
genarators ofµn(L). Note that therefore (a,n) = 1.
Take ζ ∈ µn(L) therefore ζ = ζbnwith b ∈ Z so thenσ(ζ) = σ(ζbn) = σ(ζn)b = (ζan)b = ζabn =
(ζbn)a = ζa

the mod-n cycliotomic character of K
χK,n ∶ Gal(K(ζn)/K)→ (Z/nZ)× s.t.σ ↦ χK,n(σ) ∶= a0 ⋅ σ(ζn) = ζa0n
n-th cyclotomic polynomial:
Φn ∶= ∏

a∈(Z/nZ)×
(X − ζan) ∈K[X].

Proposition 6.8/Bianchi 7.9

⎧⎪⎪⎨⎪⎪⎩

1)χK,n injective group homo. independent of choice of primitive nth root ζn

2)Φn is irreducible ⇔ χK,n surjective

(Prop 6.8/Bianchi 7.9)

Proof:
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1) (Lemma 6.7/Bianchi 7.8) impliesχK,nwell defined and independent of ζn. χK,n homomorphism

withσ, τ ∈ Gal(K(ζn),K) s.t.(στ)(ζn) = ζ
χK,n(στ)
n

Note that (στ)(ζn) = σ(ζ
χK,n(τ)
n ) = σ(ζn)χK,n(τ) = (ζχK,n(σ)

n )χK,n(τ) = ζχK,n(σ)⋅χK,n(τ)
n . So

in (Z/nZ)×we see that ζ
χK,n(στ)
n = ζχK,n(σ)χK,n(τ)

n .

χK,n injective, so ζK,n(σ)1 implies ζ
χK,n(σ)
n = σ(ζn). Thereforeσ fixes ζn. Now use that ⟨ζn⟩ =

µn(L) soσ fixesLhenceσ = idL.
2)minpolK(ζn)∣Φn becauseΦn(ζn) = 0. Therefore#(Z/nZ)× = deg(Φn) ≥ deg(minpolK(ζn)) =
[K(ζn) ∶K] =#Gal(K(ζn)/K).
Therefore equality iffΦn irreducible, so#Gal(K(ζn)/K) = #(Z/nZ)×. SinceχK,n is
injective, this implies surjectiveness.

Theorem 6.9/Bianchi 7.12

Φn ∈ Z[X]monic and irreducible (thm 6.9/Bianchi 7.12)

Proof:
Φn∣Xn − 1 ∈ Z[X],by Gauss lemma, we see thatΦnmonic inZ[X].
f ∶= minpolQ(ζn). Since ζn primitive,n th root of unity, we see thatXn − 1 = f ⋅
hwhereh ∈ Z[X]monic.
If for p /∣ n prime, we see that f(ζpn) ≠ 9. Note that 0 = (ζpn)n −1 = f(ζpn) ⋅h(ζpn). So ζn is
a root ofh(xp). Therefore f ∣h(xp) soh(xp) = f ⋅ g.
f, g ∈ Z[x]monic by gauss. Can reduce coefficients mod p to geth(xp) = fg = fg.
So (h)p = h(xp), by Frobini. Therefore (h, f) ≠ 1. SoXn − 1 has multiple roots

so (Xn − 1′,Xn − 1) ≠ 1. But we see that this is equal to (nXn−1,Xn − 1)which is
nonzero, since p /∣ n so therefore (nXn−1,Xn − 1) = 1. So contradiction.

∀p /∣ n, f(ζpn) = 0 any root ofΦn is ζan. Since (a,n) = 1. Write a =
k

∏
i=1
pkii . By repeat-

ing f(ζpn) = 0, we get for those pi that f(ζan) = 0.
Note:
Frobp ∶ (Z/pZ)[X] → (Z/pZ)[X] is a ring hom. SoFrobp acts trivially on the coeffi-
cients inZ/pZ
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Lecture 7

If char(K) /∣ n, then

χK,n ∶ Gal(K(ζn)/K)↪ (Z/nZ)× s.t.σ ↦ (aσ ∶ σ(ζn) = ζaσn )

Is abelian extension.
χ surjective iffΦn = ∏

a∈(Z/nZ)×
(X − ξan) is irreducible inK[X].

Holds ifK = Q so [Q(ζn) ∶ Q] = φ(n).

Kronecker-Weber Theorem:
K/Q abelian⇒ ∃n ≥ 1 ∶ Q(ζn) ⊇K ⊇ Q.(arithmetic statement)

Extensions of Fq

Theorem 7.1/AS IX

∀n ≥ 1,∃! extensionFqn/Fq of degreenup to isomorphisms,Fqn = SplFq
(Xqn −X)

(thm 7.1.1./AS IX.1.1)

And

Gal(Fqn/Fq) ≅ ⟨Frobq⟩ ≅ Z/nZwithFrobq ∶ x↦ xq is cyclic (thm 7.1.2/AS IX.1.1)

Proof:
1) [AS IX.1.1]
2) Frobq ∈ Gal(Fqn/Fq) becausexq

n = x for allx ∈ Fqn with ord(Frob)∣n.
1 ≤ k < n ⇒ Frobk

q s.t.x ↦ xq
k
. If frobk

q = idFqn soxq
k − x = 0 for all q ∈ Fqn and we see

we have < for degrees, there we use k < n.

Cyclic extensions

Lemma 7.2 (lin. independence of characters)

Lfield,Ggroup, σi ∶ G→ Lpairwise dist. homo.

⇒ σi lin. independent (i.e.
n

∑
i=1
λiσi = 0 ⇒ L ∋ λi = 0) (Lemma 7.2)
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Ass. minimal relation, i.e.,λi ≠ 0,∀i. Then sinceσi pairwise distinct, exisets g ∈ G ∶
σ1(g) ≠ σ2(g). Then∀h ∈ Gwe get

∑
i

σi(gh) =∑
i

λiσi(g)σi(h) = 0

σ1(g)
n

∑
i=1
λiσi −

n

∑
i=1
λiσi(g)σi(h) = 0

∑
i

λi(σ1(g) − σi(g))σi(h) = 0,∀h ∈ G

Note thatσ1(g)−σi(g) = 0 if i = 1 andσ1(g)−σi(g) ≠ 0 if i ≠. This means that
n

∑
i=1
λiσi is

not minimal, which is a contradiction. So there is not a minimal relation

Theorem 7.3/ (Bianchi 7.18)(classification of cyclic extensions)

char(K) /∣ n, ζn ∈K×

1) c ∈K×/(K×)n⇒K( n
√
c)/K is cyclic of ordern

2)Gal(L/K) ≅ Z/nZ⇒ ∃c ∈K× s.t.L =K( n
√
c) (Thm 7.3,Bianchi 7.18)

Proof:

1) xn − c =
n

∏
i=1
(X − ζ i−1n

n
√
c) ∈K( n

√
c). Splits overK( n

√
c) since ζn ∈K.

HenceK( n
√
c)/K = SplK(Xn − c) is normal. Since ζ i−1n

n
√
c) are not roots for

(Xn − c)′we see that the roots ζ i−1n
n
√
c are distinct (for i = 1, . . . , n). Therefore

we see thatK( n
√
c)/K is separable, so Galois.

σ ∈ G ∶= Gal(K( n
√
ζ)/K), we see that sigma maps roots to roots. Soσ( n

√
c) =

ζaσn n
√
c = κ(σ) n

√
c, so we see that we getκ ∶ G→ µn(K) ≅ (Z/nZ)/σ( n

√
c).

First proveκ is a homomorphism.

� (στ)( n
√
c) = σ(τ( n

√
σ)) = σ(ζaτn n

√
c) = ζa[τn σ( n

√
c) = ζaτn ζaσn n

√
c = ζaσ+aτn ( n

√
c)

κ injective, thenκ(σ) = 1,soσ fixes n
√
c generatesκ( n

√
c) soσ = id

κ is surjective ifκd(σ) = 1,∀σ ∈ G, then (ζaσn )d n
√
c
d = σ( n

√
c)d = n

√
c
d
.

Since ord( n
√
c) = nwe getn∣d.

2) Gal(L/K) ≅ Z/nZ ≅ ⟨σ⟩ = {1, σ, . . . , σn−1}
(Lemma 7.2)
⇒ ∃α ∶

n−1
∑
i=0
σ−in ⋅ σi(α) ≠ 0 plays

the role of n
√
c.

σ(b) =
n−1
∑
i=0
ζ − n−iσi+1(α) ind. shift= ζn

n−1
∑
i=0
ζ−(i+1)σi+1(α) = ζn ⋅ b.

Thereforeσ(bn) = σ(b)n = (ζnb)n = bn. Here b ∶=
n−1
∑
i=0
ζ−(i+1)σi+1(α).
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Soσ(b) = ζnb ≠ b thereforeσi(b) = b iffn∣ soGal(L/K(b)) = {id} soL =K(b)/K cyclic
of ordern.

Symmetric polynomials

K field, n ≥ 1,K(X1, . . . ,Xn) function field inn variables, which is Frac(K[X1, . . . ,Xn]).
K(x) ∋ fn(z) = (z − x1)(z − x2) . . . (z − xn)with,deg(fn) = n. Here (x) = (x1, . . . , xn).
And fn(z) = zn − σ1zn−1 + σ2zn−2 ± . . . + (−1)nσn.
σi(x1, . . . , xn) are i th elementary symmetric polynomials inn variables. Are in-
variant under permutingxi i.e.xi ↦ xτ(i)where τ ∈ Sn.
σ1 = x1+x2+. . .+xn, σ2 = x1x2+x1x3+. . .+xn−1xn andσn = x1⋅xnwhereσi has ( ni ) summands
M ∶=K(σ1, . . . , σn) ≤K(x)Sn ⊆K(x).
We show now that we haveK(x)Sn =K(x)
Note thatK(x) = SplM(fn) therefore we get [K(x) ∶ M] ≤ deg(fn)! = n! we see
thatGal(K(x)/M)↪ Sn.
We want to show also surjective.
∀τ ∈ Sn, (xi ↦ xτ(i)) ∈ Gal(K(x/M) because it fixesσj. Therefore#Gal(K(x)/M) ≥
#Sn = n!. SoGal(K(x)/M) = n!, thereforeGal(K(x)/M) ∼Ð→ Sn.

Example:
n = 2, f2 = (Z − x1)(Z − x2) = Z2 − (X1 +X2)Z +X1X2 = z2 − σ1Z + σ2.
We see that ζ2 = −1which is not equal to 1 if Char(K) /∣ 2.
[K(X1,X2) ∶ K(σ1, σ2)] = #S2 = 2! = 2. Let b ∶= ∑ ζ−i2 Xi = X1 − X2, so—,b2 =
(X1 −X2)2. Soσ ∶ X1 ↦ X2,X2 ↦ X − 1, thenσ(b2) = (X2 −X1)2 = (X1 −X2)2 = b.
Note that b2 =X2

1 − 2X1X2 +X2
2 . So b ∈K(X1,X2)S2 =K(σ1, σ2).

Note that b2 − (X1 + X2)2 = b2 − σ2
1 = −4X1X2 = −4σ2. Therefore b2 = σ2

1 − 4σ2.

SoK(X1,X2) = K(σ1, σ2)[
√
σ2
1 − 4σ2], note thatσ2

1 − 4σ2 is the discriminant of f2,

soK(x1, x2) =K(σ1, σ2)[
√
D(f2)].

b =X1 −X2, σ1 =X1 +X2 soX1 = 1
2(b + σ1) =

1
2 (
√
σ2
1 − 4σ2 + 1) and

X2 = 1
2(σ1 − b) =

1
2 (σ1 −

√
σ2
1 − 4σ2)
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Lecture 8

Missed first part, first page on brightspace not readable.

L/K finite separable field extension is solvable iffGal(L̃/K) is solvable with L̃/K Galois
closure ofL/K.

Solvable in radicals iff ∃L = Ln ⊇ Ln−1 ⊇ . . . ⊇ L0 =K, whereLi+1 = Li(αi)whereαi root
ofxni − ci ∈ Li[x].
(So it is just a field extension by adjoining an extra root for some polynomial in the
field before.

For char(K) = p?0 ofxp − x − ci ∈ Li[x] if [Li+1 ∶ Li] = p = char(K) > 0.

Lemma (perminance properties):
IfM1/K is solvable, so is (M1M2)/M2.

TransitivityL/M/K: L/K is solvable iffL/M andM/K is solvable.
Therefore ifM1/K solvable andM2/K solvable, thenM1M2/K solvable.

Main theorem:
L/K finite separable, then equivalent:

1. L/K solvable

2. L/K solvable in radicals.

Proof:
Assume for simplicity char(K) /∣ [L̃ ∶K].

2⇒ 1 L = Ln ⊇ . . . ⊇ L0 =K.
Li+1 = Li(αi)whereαi root ofxni − ci ⊆ Li[X].
L̃i galois closure ofLi/K. By induction assume L̃i/K is solvable.
Show L̃i+1/K is solvable, by permanance it sufficies L̃i+1/L̃i solvable.
L̃i+1 = L̃i( n

√
ci, ζn) = SplL̃i

(xni − ci)
L̃i(ζni

) is cyclic, therefore abelian in (Z/niZ)×. By permanance properties for
solvable groups we getGal(L̃i+1/L̃i) is abelian in (Z/nZ)×, therefore solvable.
Also that for any subfield.

1⇒ 2 G = Gal(L̃/K) solvable, whereG = Gn, andGi▷Gi−1 cyclic for i ∈ {2, . . . , n}.
By permanence properties: transitivity of being solvable in radicles, implies that
it is sufficient to proveL/K cyclic where p /∣ [L ∶K] =∶ n. ThereforeL/K solvable
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in radicals.
L/K cyclic, thenL(µn)/(K(µn)/K) is cyclic. We see thatK(µn)/L is solvable.
We see thatL(µn) = L(µn, d

√
c) for some d∣n, by lecture 7.

We see thatL(µn)/K solvable in radicals by transitivity, but we see thatK ⊆
L ⊆ L(µn) henceK/L is also solvable in radicals (permanence)

Corollary:
n ≥ 4, the general equation fn ∈K(x1, . . . , xn)[z] is not solvable in radicals.
Proof:
Gal(fn) ≅ Sn is solvable iffn ≤ 4. So fn only solvable ifn ≤ 4.

Only for general equations, specific fields are solvable.

Galois group of polynomials

Lemma:
f ∈K[X] irreducible, thenG ∶ Gal(f) ≤ Sn is transitive.
(So∀1 ≤ i, j ≤ n,∃σ ∈ G s.t.σ(i) = j)

Lemma:
p prime, G ≤ Sp is transitive⇒ ∃ p-cycle inG.
If furthermore, G contains transposition (soσ(i) = j, σ(j) = i)⇒ G = Sp.

Theorem Dedekind:
f ∈ ZpX]monic and irreducible,p prime s.t. the reduction f ∈ (Z/pZ)[X] has no mul-
tiple factors, say f = f 1 ⋅ fn thenGf ∶= Gal(f) contains permutation of type
(deg(f 1),deg(f 2), . . . ,deg(fn))
So first permutation is of length deg(f 1) the second permutation of length deg(f 2) and
so on.

Example:
X5 − X − 1 ∈ Z[X] is monic. We see that f mod 5 is irreducible. Therefore irre-
ducible inZ[X] ⇒ Q[X],Gf ∶= Gal(f) contains a 5-cycle (where 5 = deg(f)). We see
that f = f 1 ⋅ f 2 ∈ (Z/2Z)[X]. Where f = (X2 +X + 1)(X4 +X2 + 1) soGf containsσ =
(12)(345). We see thatσ3 = (12)3(345)3 = (12), which is a transposition. Therefore
by first lemma of this section, we see thatGf ≅ S5.

Algebraic closure of a field

K isalgebraically closed iff f ∈K[X]∖K (so non-constant) has a root inK iff it
splits completly overK iff∀L/K algebraic (thereforeL = K, so does not have proper
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algebraic extensions).

Theorem:

∀fieldK,∃algebraic closureKalg ∶=K/K
that is analgebraic extension of K that is algebraically closed

it is unique up to non-unique isomorphisms.

Gal(Q/Q) is absolute Galois group ofQwhich is infinite.

Extra curriculum: Infinite Galois theory

Extra curriculum: Not in exam.
L/K Galois (not necessarily finite), then there is a profinite groupGal(L/K)
Bijection {M ∶ L/M/K}→ {H ≤ Gal(L/K)} s.t.M ↦ Gal(L/M) andLH ↤H.
M/K finite iffGal(L/M) ≤ Gal(L/K) is open.
Exercise:
Gal(Fq/Fq) ≅ Z = lim

n
Z/nZ

We see that [K ∶K] <∞when

� K =K, since then [K ∶K] = 1, and when

� K = R soK = C = R(i) so [K ∶K] = 2
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Lecture 9

Definition VI.1.1.
R unitary ring,Left R modulo M abelilan group (M,+,0)withaction on ringR,
so

R ×M →M, (a,m)↦ am

s.t.∀a, b ∈ R,∀m,n ∈M it holds that:

RM1 a(m + n) = am + an

RM2 (a + b)m = am + bm

RM3 a(bm) = (ab)m

RM4 1m =m

RightRmodule defined analogously but with actionM ×R →M
Examples:

1. K ,field, thenKmodulos are same thing asK vector space.

2. n > 0, thenRn is anRmod. Note thatR0 = {0} is also an R-mod.

3. R ⊂ S subring, thenS is anRmod IfS = R[t] = R[t1, . . . , tn] then alsoR−modulo.

4. K field, n > 0 thenKn isRmod, whereR = Kn×n andR ×Kn → Kn s.t. (A,x) ↦
Ax

5. More generally, G = (G,+,0) abelian group, thenEndZ(G) = {φ ∶ G→ Ggroup hom.} ,in
an ring via (φ + ψ)(x) = φ(x) + ψ(x) and (φψ)(x) = φ(ψ(x)). G is anR−mod
viaR ×G→ G s.t. (φ,x)↦ φ(x).
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Homomorphism theorem

Ifφ ∶MM →M ′ is anR−mod homom. ThenR/ker(φ) ≅ im(φ) = φ(m) alsoR−mod.

M,M ′ be R-mods. A mapφ ∶ M → M ′ is anR-mod homomorphism ifφ is a group
hom. andφ(ax) = aφ(x),∀a ∈ R, x ∈M .
SoHomR(M,M ′) = {φ ∶ M → M ′which is R-mod-hom}. Note thatEndR(M) =
HomR(M,M).
φ ∈ HomR(M,M ′) is isomorphism ifφ is bijective.
Example:

1) M,M ′ abelian groups, thenHomZ(M,M ′) = {φ ∶M →M ′ group homo.}

2) K field, V,V ′ a K-vectorspace. φ ∶ V → V ′ isK−mod hom. iffφ is a K-linear map.

Remarks:

� φ ∈ HomR(M,M ′) is injective iff ker(φ) = {0}

� Ifφ ∶M →M ′, ψ ∶M ′ →M” are R-mod homo. then so isψ ○ φ.

3) R commutative ring, a ∈ RmM R-mod, thenφa ∈ EndR(M)where
φa ∶M →M s.t.x↦ ax.

IfM = R, thenEndR(R) = {φa ∶ a ∈ R} since if,φ ∈ EndR(R) thenφ = φawhere a =
φ(1) soφ(x) = φ(x ⋅ 1) = x ⋅ φ(1) = xa

Remark:
Ifφ ∶ R → R is a R-mod hom. thenφ is not necessarily a ring hom.

4) E.g. we see thatR = K[t], thenφ(f(t)) = tf(t) is not a ring homomorphism,
sinceφ(1) = t ≠ 1, and it is a R-mod hom. We see thatψ(f(t)) = f(t2)which is
a ring hom. but not an R-mod-hom.

5) Z[i] → Z2 s.t. (a + bi) ↦ (a, b) is aZmod is. SimilarlyZ[
√
2] ≅ Z2 asZmod isom.

ButZ[i] /≅ Z[
√
2] as rings, since (Z[i])× = {±1,±i} andZ[

√
2]× = {±(1 +

√
2)n ∶

n ∈ Z} so we see that the unit groups are of different size, so they can not be
isomorphic (as rings).
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Submodules

LetM be anR−mod. Then aR-submodulo ofM is a subgroupN ofM s.t. if,x ∈
N and a ∈ R then ax ∈ N .
Example

1) φ ∶ M → M ′ is a R-mod-hom., then ker(φ) ⊂ M is a submod, im(φ) ⊂ M ′ is a
submod. We see∀S ⊂M ′, thatφ−1(S) is submod ofM .

2) VMK vector spaces, thenN ⊂ V is a K-submod iffV is a lin. subspace.

3) M1,M2 ⊂M submod⇒M1 ∩M2 is a submod.
More generally if I is a set andMi ⊂ M is a submod for all i ∈ I then ⋂

i∈I
Mi is a

submod ofM .

4) An leftR− submod ofR is the same thing as an ideal ofR.

5) M−R- mod, I ⊂ R ideal, ifS ⊂ M then IS = {
n

∑
j=1
aijxj ∶ aj ∈ I;xj ∈ S,∀j, n ≥ 0} is

anR− submod.
I ideal, ∀a ∈ I,∀aj ∈ I, aaj ∈ I.

Quotient modules

Lemma/definition M isRmod, N ⊂M is submod then

1. The factor groupM/N is anR−mod viaR×M/N →M/N s.t. (a, x+N)↦ ax+N

2. π ∶M →MN s.t.x↦ x +N is a surjectiveR−mod hom.

noet that ifx,x′ ∈ N thenx + N = x′ + N so ax′ + N = ax + a(x′ − x) + N ⊆ ax +
N similarly ax+N ⊆ ax′ +N . Therefore we see that the function in 1) is well-defined.
The proof now follows using the modulo axioms of bothM andN . We know that it
is already a group.
For the second one, we see that it is indeed already a surjective homomorphism from
group theory so we only have to proof that it is a n R-mod-hom.
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Lecture 10

LetR be a unitary ring.
Theorem 10.1 (Top VII.1.4):

φ ∶M →M ′R-mod-hom∃!R − mod-hom φ̃ ∶M/ker(φ)→M ′ s.t.φ = φ̃ ○ π
i.e. φ̃ ∶M/ker(φ)→M ′ s.t.x + ker(φ)↦ φ(x)
is well-defined R-mod-hom and ifφ surjecitveM/ker(φ) ≅M ′

(Thm 10.1/Top VII.1.4)

Hereπ is canonical surjection
Theorem 10.2:

M R-mod,N,P ⊂M R-submods, then (N + P )/P ≅ N/(N ∩ P ) (Thm 10.2)

Proof:
Need to show thatN ∩P is a submod ofN , andP is a submod ofN +P , then have to
find explicit isomorphism.
Theorem 10.3:

P ⊂ N ⊂M R-submods

⇒N/P ⊂M/P submod

⇒(M/P )/(N/P ) ≅M/N (Thm 10.3)

Example:
V = R2, U = R ( 10 ) , VU = {v +U ∶ v ∈ V } therefore (

x
y ) +U = ( y

y′ ) iff y = y′.
SoV /U → R s.t. ( xy ) +U ↦ y is anRmod isom. induced byV → R s.t. ( xy )↦ y.
Lemma 10.4:

V K-vector space , U ⊂ V lin. subspace then

dimK(V ) = n⇒ V ≅Kn andV /≅Km,∀m ≠ n (Lem. 10.4)

Proof:
Fix basisB = (b1, . . . , bn) ofV thenφ ∶ V → Kn s.t.∑λibi ↦ (λi). Is aK vector space.
But#B is uniquely determined byV .
Lemma 10.5

dimK(V ) = n,dimK(U) =m, (b1, . . . , bm)basis ofU, (b1, . . . , bm, bm+1, . . . , bn)basis ofV,W = ⟨bm+1, . . . , bn⟩ ⊂ V
π∣W ∶ V → V /U s.t.x↦ x +U is isomorphism (Lem. 10.5)

Proof:
1)Hom. clear.
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2) surjective: Let v +U ∈ V /U so then v =
n

∑
i=1
λibi. Letu =

m

∑
i=1
λibi ∈ U,w =

n

∑
i=m+1

λibi ∈W
So then v = u +w soπ∣W (v) = (v − u) +U = v +U .
3)π∣W is injective follows fromU ∩ V = {0} since,w +U = w′ +U ⇒ w −w′ ∈ U ∩W .
Proposition 10.6

dimK(V ) = n,dimK(U) =m⇒ dimK(V /U) = n −m (Prop 10.6)

Proof:
By taking same basis of above, then use (Lem. 10.5), which immediately shows this
proposition.
Corollary
∀v ∈ V,∃!u ∈ U,w ∈W s.t. v = u +w

M be R-mod, N,P ⊂M submods, thenM is (inner) direct sum ofP andN writtenM =
N⊕P if

1. M = N + P i.e.,∀x ∈ P,∃y ∈ N,z ∈ P s.t.x = y + z.

2. N ∩ P = {0}

This meansM = N ⊎P s.t.∀x ∈M,∃!y ∈ N,z ∈ P s.t.x = y + z.

I set,MiR-mod, ∀i ∈ I,∏
i∈I
Mi = {(xi)i∈I .s.txi ∈Mi,∀i ∈ I}. This is nR−mod via com-

ponentwise addition and scaler multiplication, called thedirect product ofMi.
Example:

Rn =
n

∏
i=1
R thenRi = {f ∶ I → R functions}

TakeRZ≥0 = {real sequences}

(outer) direct sum ofMi is theR− submod

⊕
i∈I
Mi = {(xi)i∈I ∈ ∏

i∈I
Mi ∶ xi = 0,∀but finitely many i ∈ I} ⊆ ∏

i∈I
Mi

RmodM is free, if∃I andRmod isomorphism s.t.M ≅⊕
i∈I
RREALLY IMPORTANT

Example:

� I finite then∏
i∈I
Mi =⊕

i∈I
Mi

� Rn =
n

⊕
i=1
R is free.

� ⊕
n∈Z≥0

R = {sequences (an)n≥0 s.t.∃N > 0 ∶ an = 0,∀n > N}
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� R[t] is free, since we can map∑antn ↦ (an) so then we have [t] → ⊕
n∈Z≥0

Rwhich

is isomorphic, hence free.

� V a K-vector space, U ⊂ V linear subspace, thenV ≅ U⊕V /U .

� M anR, mod, allMi ⊂M submods, s.t.M is the inner direct sum of allMi thenM is
isom. to the outer sum of theMi.

� AllK vector spaces are free.

� Z/2Z is a freeZ/2Zmod. But not free asZ−mod. This is becauseM is a
freeZ−mod, then#M = 1, ifM = {0} or#M =∞

� M = Z⊕Z/2Z is not free asZ−mod, since 2(0,1) = (0,0) but (0,1) ≠ (0,0) but∄x ∈
Zn of order 2.

� Z/6Z ≅ Z/2Z ×Z/3Z asZ−mod, but also asZ/6Z−mods.

Remark:
If d∣N thenZ/dZ isZ/NZ -modulo. This is becauseZ/dZ ≅ (Z/NZ)/d(Z/nZ).

So Chinese remainder theorem: IfN = ∏pieiwhere pi prime, ei > 0 thenZ/nZ ≅
⊕
i
Z/(peii )Z asZ−mods and asZ/nZ -mods.

Theorem 10.6

R comm. ring,m,n ≥ 0.thenRn ≅ Rm⇒ n =m (Thm. 10.6)

Proof:
RecallR = Z thenZm ≅ Zn⇒ (Z/2Z)m ≅ (Z/2Z)m⇒m = n
In general. Choose maximal idea J ⊂ R. ThenR/J = K is a field. Suppose exists
isom.φ ∶ Rm → Rn thenφ(Jm) ⊂ Rn is a submod so there exitss a K-vectorspace
isomorphismRn/φ(Jm) ≅ Rm/Rn ≅ (R/J)m = K. We get dimK = m. This is be-
causeRn/φ(Jm) = ⟨S⟩whereS = {ei + φ(Jm) ∶ i ∈ {1, . . . , n}}. We see that#S =
n son ≥m. Similarly we getm ≥ n som = n.

ForM free sayM ≅ Rnwe calln therank ofM (so rk(M) = n)
M is anRmod,S ⊂M subset. ThenS is linear indep/ of∀(λs)s∈S whereλs ∈ R s.t.∀λs ≠
0we have ∑

s∈S
λss = 0 then allλs = 0.

S isgenerating set ofM ifM = ⟨S⟩ = {∑
s∈S
λssfinite sums}.

S is anR-basis ifS is lin. indep, and a generating set.
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M is finitely generated ifM = ⟨S⟩ for someS ⊂M finite.
M iscyclic ifM = ⟨S⟩where#S = 1.

Lemma 10.7

M R-mod

1)S ⊂M basis⇔ ∀x ∈M,∃!(λs)s∈S ∶ x =∑
s∈S
λss

2)M has basis⇔M free

Proof:
Part 1: Sim. as LA
Part 2: IfM is free, soφ ∶M ≅⊕

i∈I
R ∋ (ei)i∈I then (φ−1(ei)) is a basis.

If (si)i∈I = S ⊂M basis, thenφ ∶M →⊕
i∈I
R s.t. si ↦ ei.Still have to show isomorphism.

Example:
M = R = Z = ⟨1⟩where {1} is basis, but we see thatM = ⟨2,3⟩ since 1 ∈ ⟨2,3⟩.
IfS = {2,3}we see that (−3) ⋅ 2 + 2 ⋅ 3 = 0 so not lin. indep. soS is not a basis and
no subset ofS is since 2 /∈ ⟨3⟩,3 /∈ ⟨2⟩.

Lemma 10.8:

R comm. ring I ⊆ R ideal

a)I cyclic asR − mod⇔ I principal

b)Rdomain then I free⇔ I principal (10.8)

Proof:
a) follows by definition of principal ideal and cyclic.
b)⇐ if,I is principal, then I = Rx soR → I s.t. a↦ ax is an isomorphism. So I is free.
⇒ suppose I is free, then if rk(I) > 1,∃x1, x2 ∈ I lin. indep. And I ≅ Rrk(I), but x2x1 −
x1x2 = 0which is a contradiction so rk(I) = 1, hence I = Rx is principal.
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Lecture 11

R ring, Mi anR−mod for all i ∈ I then

⊕
i∈I
Mi = {(xi)i∈I ∶ xi ∈Mi,∀i ∈ I, xi = 0, for all but fin. many i}

R−modM isFree if ∃I s.t.M =≅⊕
i∈I
R

M is free iffM has a basis (a lin independent generating set)
R domain, I ⊂ R ideal, then I free iff I principal.

Theorem 11.1:

Rprincipal ideal domain (PID), letM free R-mod then anyR − submod ofM is free
(Thm 11.1)

Proof:
See conrad, all most the same forR = Z (group theory)

Example:

� R = Z[
√
−5] andM = ⟨2,−1 +

√
−5⟩ ⊂ Rwhich is non-principal ideal, so not free

asR−mod. ButM⊕M ≅ R2 is free.

� R = {f ∈ C∞(R) ∶ f(x + 2π) = f(x)} is a ring.
M = {m ∈ C∞(R) ∶ m(x + 2π) = −m(x)} is a module overR viaR × M →
M, (f,m)↦ fmwhere (fm)(x) = f(x)m(x).
Claim:

1. M⊕M ≅ R2.
Let c0(x) = cos (x2) , s0(x) = sin (

x
2
). Then s0, c0 ∈M . Letψ ∶ R2 →M⊕M ,

s.t. (f, g)↦ A (fg ), whereA = (
c0 s0
−s0 c0

)

We see thatψ is anR−mod hom.

A−1 = (c0 −s0
s0 c0

) andm,n ∈M ⇒mn ∈ R.

ψ−1 ∶ M⊕M → R2 s.t. (m,n) ↦ A−1 (m
n
) soψ has an inverse, soψ is an

isomorphism.

2. M is not free.
Exercise VI.7.3. This saysM ≅ I ⊂ R ideal, and
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I = ker(ev0) = {f ∈ R ∶ f(0) = 0}, It suffices to show that∄R−mod iso-
morphismφ ∶ R → M . Suppose therefore there exists such aφ. Let g ∶=
φ(1) ∈ M . Let a ∈ [0,2π] s.t. g(a) = 0. Sinceφ surj, ∃f ∈ R s.t.φ(f) =
cawhere ca(x) ∶= cos (x−a2 ). We see hterfore thatφ(f) = fφ(1) = fg. So
then 0 = f(a)g(a) = ca(a) = cos(0) = 1. But we see that 0 ≠ 1 soφ is not sur-
jective, soφ is not a R-mod isomorphism. Therefore there does not exists
an R-mod isomorphism, hence we are done?

Universal property (UP) of direct sums

Theorem 11.2 (UP):

R ring,MiR-mod∀i ∈ I ∶ ιi ∶Mi →⊕
i∈I
Mi = N s.t.xi ↦ (xi, δij)j∈I

This is an R-mod-hom, then following properties:

a)The pair (Ni, (ci)i∈I) satisfies UP:∀(M, (φi)i∈I s.t.M R-mod, φi ∶Mi →M R-mod hom

⇒ ∃!φ ∈ HomR(N,M) ∶ φ ○ ιi = φi,∀i ∈ I
b)Let (D, (ji)i∈I),DR-mod, ji ∶Mi →D be R-mod hom.& satisfy a),

i.e.∀(M, (φi)i∈I),∃!ψ ∶ HomR(D,M) s.t.ψ ○ ji = φi,∀i ∈ I ⇒D ≅ N
(Thm 11.2/UP)

Proof:

Part a Note thatx = (xi)i∈I ∈ N we havex = ∑
i∈I
ιi(xi)⇐ (∗).

Consider (M, (φi)i∈I) and supp ∃φ ∈ HomR(N,M) s.t.φ ○ ιi = φi,∀i ∈ I. Then
forx = (xi)i∈I ∈ N ,we haveφ(x) ∗= ∑

i∈I
φ(ιi(xi)) = ∑

i∈I
φi(xi). soφ is already

uniquely determined by (M, (φi)i∈I)
So this proofs both uniqueness, andφ ∶ N →M s.t.x = (xi)i∈I ↦ ∑

i∈I
φi(xi) shows

existence. Sinceφ is anR−mod hom, andφ ○ ιi = φi.

Part b UP forD, withM = N,φi = ιi. So ∃!ψ ∈ HomR(D,N) s.t. ιi = ψ ○ ji⇐ �.
UP forN withM =D,ϕi = ji,so ∃!ϕ ∈ HomR(N,D) s.t. ji = φ ○ ιi.
We show thatψ,φ are both isomorphisms, and to be more explicit, they are

eachothers inverses.ιi
�= ψ ○ ji = (ψ ○ φ) ○ ιi. So we show thatψ ○ φ = id.

UP forN withM−N ,andφi = ιi, then∃!ϕ̃ ∈ HomR(N,N) s.t. φ̃○ιi = ιi for all i ∈ I.
This holds for φ̃ = idN , and only for this one due to uniqueness. But we saw
that it also hold for (ψ ○ φ). Therefore we see that φ̃ = ψ ○ φ = idN . By similair
reasoning,φ ○ ψ = idD. Thereforeφ,ψ are isom.
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Modules over PID’s

R comm. ring,M−R-mod. Then:
x ∈M Torsion iff∃a ∈ R ∖ {0} s.t. ax = 0.

ForR = Zwe seex torsion iff ord(x) <∞.
Tor(M) ∶= TorR(M) = {x ∈M torsion}

Example:

1. V aK− vector space,thereforeTor(V ) = {0}

2. M = Zn,R = Z, thenTor(Zn) = {0}

3. R = Z,M = Z/6Z thenTor(M) =M since 6x = 0,∀x ∈M .

4. R =M = Z/6Z thenTor(M) = {0,2,3,4}

5. M fin. abel. group, thenM ≅ Z/d1Z×. . .×Z/dnZ s.t.,d1∣d2∣ . . . ∣dn⇒ TorZM =M .
IfM is finitely generated, then we seeM ≅ Zr × Z/d1Z × . . . × Z/dnZ for r ≥ 0.
ThenTor(M) ≅ Z/d1Z × . . . ×Z/dnZ

Ann(M) = AnnR(M) = {a ∈ R ∶ ax = 0,∀x ∈ M} this is calledAnnihilator ofM
(Note thatTor(M) ⊆M,Ann(M) ⊆ R.)

Lemma 11.3

1)R integral domain,thenTorR(M) is submodule ofM

2)Ann(M) is an ideal ofR (Lem 11.3)

Proof:
Tutorial

Go back to example 5, soT finiteZ−mod, thenT =≅⊕Z/diZ. ButT =≅
t

⊕
i=1
AiwhereAi is

the pi Sylow subgroup. S.t.#T =
t

∏
i=1
peii where pi prime and ei > 0.
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Lecture 12

If Ann(M) ≠ {0} thenTor(M) =M .

LetR be PID
Theorem 12.1:

T R-mod s.t. Ann(M) ≠ {0},writeh ∈ Ann(M) ∖ {0}ash =
t

∏
i=1
peii with

pi ∈ Rprime and non-associated, ei > 0 setTh,i ∶= {x ∈ T ∶ peii x = 0}
1)Th,i submod ofT,∀i
2)Th,i = {x ∈ T ∶ peix = 0 for some e > 0} = T (pi)
3)T = T (p1)⊕ ⋅ ⋅ ⋅⊕T (pt)
4)Ann(M) = hR andp ∈ Rprime thenT (p) = {0}⇔ p /∣ h (Thm 12.1)

Proof:

1) follows from definition

2) Th,i ⊂ T (pi) is logic. Now set qi = h
p
ei
i

∈ R. Therefore (qi, pi) = 1. Letx ∈ T (pi).
We know peix = 0 for some e > 0. Since (qi, pi) = 1we see that (qi, pei) = 1, so
therefore by Beizout, 1 = rpei + sqi for r, s ∈ R. So we get peii x = p

ei
i (rpeix + sqix) =

peii qisx. Use that peii qi = h therefore we get peii x = hsx = 0 so we haveT (pi) ⊂
Th,i soT (pi) = Th,i

3) Write 1 = siqi+. . .+stqt. Letx ∈ T . Want to show: ∃!xi ∈ T (pi)∀i, s.t.x = x1+. . .+xt.
Letxi = xsiqi thenx = x1 + . . . + xt. Since peii xi = hxs0 = 0,soxi ∈ T (pi).
Now we have to show it is unique. Suff. to show if y1 + . . . + yt = 0 for yi ∈
T (pi) then all yi = 0.
As in 2) let 1 = r1pei + sqi, where pe1yi = 0, then yi = rpeiyi + sqiyi = sqiyi.

If y1 + . . . + yt = 0, then yi = sqiyi = −s
1

∑
j≠i
qiyj = 0. If i ≠ j then qiyj = syjqiqj =

0 becauseh∣qiqj. So we get yi = 0 for all i.

4) LetAnn(T ) = hR. SupposeT (p) = {0}. Assume p∣h, leth = h′pe s.t. p /∣ h. ∀x ∈
T we have 0 = hx = h′pex, soh′x ∈ T (p) = {0}. Soh′ ∈ Ann(T ), which is a con-
tradiction ash′ /∈ hR. SoT (p) = {0}⇒ p /∣ h.

Suppose p /∣ h leth =
t

∏
i=1
peii . ThereforeT = T (p1)⊕ . . .⊕T (pt). Note ph ∈

Ann(T ). ThereforeT = T (p1)⊕ . . .⊕T (pt)⊕T (p), soT (p) = {0}
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Theorem 12.2:

RPID,M Fin. Gen.R − mod. LetT = Tor(M)
1)M = F⊕T whereF ≅M/T free and rank(F )uniq. determ. byM

2)T ≠ {0} thenT ≅ N1⊕ . . .⊕Ns,Ni = R/diRwithd1∣d2∣ . . . ∣ds and
Ni submodules, di ∈ R ∖R× uniq. determ up to integers by multiples ofR×

3) IfT ≠ {0}, thenT = T (p1)⊕ . . .⊕T (pt)wherep1, . . . , pt ∈ Rprimes, s.t.

T (pi) ≠ {0},wherepi uniquely determ. byM up to mult. byR× (12.2)

Theorem 12.2 is called the structure theorem for finitely generated modules over PID
Proof:

1) See Conrad/GT

2) See Conrad/GT

3) M finitely generated, thenT finitely generated. SayT = ⟨s1, . . . , sn⟩. Lethi ∈ R ∖
{0} s.t.hisi = 9. Thenh =∏hi ∈ Ann(T ) now apply (Thm 12.1)

Linear algebra over fields (normal forms of matrices)

K field, V finite dimensional K-vector sapce, Letφ ∈ EndK(V ) = {f ∶ V → V linear} then evφ ∶
K[t]→ EndK(V ) s.t.∑

i
ait↦ ∑aiφi. is a ring hom. and a K-vector space.

Lemma 12.3:

1)K[φ] = evφ([K(t)]) com. subring of EndK(V )
2)V is K[φ]mod viaK[φ] × V → V s.t. (∑aiφ

i, x)↦∑aiφ
i(x)

3)V is aK[t]mod viaK[t] × V → V s.t. (f, x)↦ evφ(f) ⋅ x = (evφ(f)(x))
4)∃!monicmφ ∈K[t] s.t.K[φ] ≅K[t]/(mφ)
5)mφ∣Kφ, char pol ofφ (Lem. 12.3)

Proof:

1),2),3) Tutorial

4) K[t]PID, thereforeKer(evφ)prime. Letmφ unique monic gen. ThenK[t]/(mφ) ≅
K[φ]

5) Cayley-Hamilton
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Theorem 12.4

Writemφ =
t

∏
i=1
heii , ei > 0andhi irr., monic, not ass.

1)Vi = {v ∈ V ∣heii (φ)(v) = 0} isK[φ] −&K[t] − submond ofV

2)Vi ≠ {0}∀iandViGeneralized eigenspaces

3)V = V1⊕ . . .⊕Vt (12.4)

Proof:
K[t]PID, we generate ker(evφ) = AnnK[t]V ≠ {0}. Then apply (Thm 12.1)withh =
mφ soTmφ,i

= Vi

Remark:SinceVi is aK[φ]mod haveφ(Vi) ⊂ Vi. This andV = V1⊕ . . .⊕Vt implies
that can deal with theVi separable

Example:

mφ = Kφ =
n

∏
i=1
(t − λi)withλi distinct.

Vi = {v ∈ V ∶ (t − λi)(ϕ)(v) = 0} = {v ∈ V ∶ (φ − λiidv)(v) = 0}which is the eigenspace
ofλi.
dimVi = 1⇒ Vi = Kxi for somexi ∈ Vi thereforeV = Kx1⊕ . . .⊕Kxn then the matrix
ofφw.r.t. to the basisB denoted byMB(φ) satisfyMB(φ) = diag(λ1, . . . , λn)where
B = (x1, . . . , xn).

To gen. this, find basis forV using bases ofVi s.t. matrix ofBi φ∣vi wrtBi is simple. By

remark above, if we setB = (B1, . . . ,Bt), thenMB(φ) =
⎛
⎜
⎝

MB1(φ∣v1)
⋱

MBt(φ∣vt)

⎞
⎟
⎠
which

is a block matrix.

Example:

V +R3,A =
⎛
⎜
⎝

1 −4 0
1 −3 0
−1 2 −1

⎞
⎟
⎠
, φ(x)Ax, thenKφ(t) = (t+1)3. So thenA+I3 =

⎛
⎜
⎝

2 −4 0
1 −2 0
−1 2 0

⎞
⎟
⎠
=

N ≠ 0 byN2 = 0. SoMφ = (t + 1)2 soVt = Ker()φ + idV )2)
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Theorem 12.5:

supp.mφ = (t − λ)2, λ ∈K
1)φ = λid + ψ s.t.ψ2 = 0
2)∃basisB ofV s.t.MB(φ)upp triang. matrix with onlyλ ’s on diagonal (12.5)

Proof:

1) 0 =mφ(φ) = (φ − λidV )2. Defineψ = φ − λidV

2) Look atψ first, Wi = ker(ψi) thereforeW1 ⊂ W2 ⊂ . . . ⊂ Wl = V . Construct ba-
sisB ofV , so choose basisB1 ofW1,extend to basisB2 ofW2 and so on. Useψ(Wj) ⊂
Wj−1 to showMB(ψ) is upper triangular with zeros on diagonal, then use 1)

Example:

A =
⎛
⎜
⎝

1 −4 0
1 −4 0
−1 2 −1

⎞
⎟
⎠
, andN = A + I3,N2 = 0. Letψ = N . W1 ⊊ Wn = V whereW1 =

ker(N) = ⟨( 21
0
) , ( 00

1
)⟩. SinceW2 = V , can takeB = ⟨( 21

0
) , ( 00

1
) , ( 10

0
)⟩. ThenN ( 10

0
) =

( 2
1
−1
) = 1 ( 21

0
) − 1 ( 10

0
). ThereforeMB(ψ) = (

0 0 1
0 0 −1
0 0 0

)⇒MB(φ) = (
−1 0 1
0 −1 1
0 0−1

)
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Lecture 13

Exactness

R ring
A sequence

. . .→M
fÐ→ N

gÐ→ P → . . . ofR − mod homomorphisms (13.1)

-) is exact inN if im(f) = ker(g)
-) is exact if it’s exact everywhere
Remark:
(13.1) exact inN ⇒ g ○ f = 0 but not necessarily other way around.
Example:

1. {0}→ N
gÐ→ P s.t. 0↦ 0 is exact iff g is injective.

2. M
fÐ→ N → 0withx↦ 0 iff f is surjective.

3. For allR−modsM,P
0 → M

ι1Ð→ M⊕P
π2Ð→ P → 0 s.t. ι1 ∶ x ↦ (x,0), π2 ∶ (x, y) ↦ y is always exact.

Sinceπ1 is inj, π2 is surj. Furthermore ker(π2) = {(x, y) ∈M⊕P ∶ y = 0} = imι1

4. For allR−mod hom. g ∶ N → P we get

0→ ker(g) ιÐ→ N
gÐ→ Im(g)→ 0. Note that we can write im(g) ≅ N/ker(g). So

0→ ker(g) ιÐ→ N
πÐ→ N/ker(g)→ 0 s.t.π ∶ x↦ g(x) + ker(g).

Short exact sequence (ses) ofR−mods is an exact sequence 0→M → N → P →
0.
Remark:
1) is shorter then the definition of SES, but it is not an SES.
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Lemma 13.2:

∀SES0→M → N → P → 0 exists a comm. diagram

0 → M
fÐ→ N

gÐ→ P → 0
≅↓ f ∣∣idN ≅↓ h

0 → ker(g) ιÐ→ N
πÐ→ N/ker(g) → 0

h inverse ofN/ker(g)→ Im(g), x + ker(g)↦ g(x) (Lem 13.2)

Proof:
We need to show both squares are commutative. Commutative is trivial. Note that
since im(f) = ker(g and f injective (follows from example 1), we have that f ∶ M →
ker(g) is an isomorphism.
For the second square, ∀x ∈ N we need thatπ(x) = h(g(x)).
Sinceh inverse ofN/ker(g)→ im(g)we see thath(g(x)) = x + ker(g) = π(x)
h is surjective, sinceN/ker(G)→ im(g) is isomorphism, but we needP → N/ker(g) to
be a well-def. isomorphism, which follows from that g is surjective.

Homomorphisms

Recall:M,N areR−mods, thenHomR(M,N) = {f ∶M → N,Rmod-hom}
Lemma 13.3:

M,N areR − mods

1 HomR(M,N) subgroup ofHomZ(M,N)with group law addition
2 EndR(M) ∶= HomR(M,M) is subring of EndZ(M)with composition

(Lem 13.3)

Examples:

1. K field thenHomK(Kn,Km) ≅Kn×M

2. n ≥ 2, f ∈ HomZ(Z/nZ,Z) forx ∈ Z letx ∶= x mod n. Therefore f(x) = x ⋅ f(1).
SO 0 = f(0) = f(n) = nf(1). This last multiplication is multiplication inZwhich
has no zero divisors, so f(x) = 0 for allx ∈ Z thereforeHomZ(Z/nZ,Z) = {0}.

3. R comm ring, M R-mod. Forx ∈M let fx ∶ R →M s.t. a↦ ax.
Claim: φ ∶M → HomR(R,M) s.t.x↦ fx is anR−mod isom.
Proof:

� fx ∈ HomR(R,M)which is easy.

� φ(x + y) = φ(x) + φ(y)which is clear.
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� To showφ is an R-mod hom, still need to show∀b ∈ R,x ∈ M ∶ φ(bx) =
bφ(x). Note thatφ(bx) = fbx and bφ(x) = bfx.
Let a ∈ R then fbx(a) = abx and bfx(a) = bax but sinceR commutative, we
see that abx = bax so therefore indeed fbx = bfx. Soφ(bx) = bφ(x).

� φ injective. Letx ∈M∖{0} thenφ(x)(1) = fx(1) = x ≠ 0 thereforeφ injective.

� φ surjective. Let f ∈ HomR(R,M),∀a ∈ R,φ(f(1))(a) = f(1) ⋅ a since f R-
mod hom. wew see that this is equal to f(a). So f = φ(f(1)) soφ surjective.

Remark:
In bookφ−1 = ev1 ∶ HomR(R,M)→M,f ↦ f(1).
Remark:
We haven’t said thatHomR(R,M) is an R-modulo.

Lemma 13.4:

HomR(M,N) is anR − mod ifR commutative (Lem 13.4)

Proof:
When isHomR(M,N) anR−mod? viaR×HomR(M,N)→ HomR(M,N) s.t. (a, f)↦
af where (af)(x) = af(x). To be this enough, we need g = af ∶M → N is anR−mod
hom. Let b ∈ R,x ∈ M , then g(bx) = (af)(bx) = af(bx) = abf(x) bg(x) = baf(x).
These are equal ifR is commutative.

From now one, we assume thatR is commutative ring.

ForR−modAwe defineHomR(A,−) takes anR−modM to theR−—,modHomR(A,M) and
it takesR−mod f ∈ HomR(M,N) to f∗ ∈ HomR(HomR(A,M),HomR(A,N)) thepush
forward of f .
Ifφ ∶ A→M and f ∶M → N then f∗φ = f ○ φ.
ifφ ∈ HomR(A,M) then f∗φ ∈ HomR(A,N)

Claim:
f∗ ∶ HomR(A,M)→ HomR(A,N) is anR−mod hom. so a ∈ R,x ∈ A thenφ ∈ HomR(A,M).
f∗(aφ)(x) = f ○ (aφ)(x) = f(φ(ax)) = f(aφ(x)) = f(φ(x)) = a(f∗φ)(x)

Question:
Let f ∈ HomR(M,N)when is f∗ injective/surjective?
Surjective: If f is not surjective, then f∗ is not surjective.
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Example:
R = Z =M,N = Z/2Z = A then f = π ∶ Z→ Z/2Z s.t.x↦ x mod 2 is surjective.
Then f∗ is not surjective. f∗ ∶ HomZ ∶ (Z/2Z)→ HomZ(Z/2Z,Z/2Z).
But we see thatHomZ(Z/2Z) = 0 andHomZ(Z/2Z,Z/2Z) ≅ Z/2Z an dwe seee that 0→
Z/2Z is not surjective, since sets are different size.
Injective: Let f ∈ HomR(M,N) injective,supposeφ ∈ kerf∗ so f(φ(x)) = 0,∀x ∈M soφ(x) =
0,∀x ∈M , so f∗ is injective.

Theorem 13.5:

Let 0→M
fÐ→ N

gÐ→ P to be exact sequence of R-mod-homs

⇒ 0→ HomR(A,M)
f∗Ð→ HomR(A,n)

g∗Ð→ HomR(A,P ) is exact (Thm 13.5)

Proof:
Already discussed maps well-defined.
Exactness inHomR(A,M) is exact, since f∗ is injective. (since f is injective since first
line exact). HomR(A,N) exact requires Im(f∗) = ker(g∗)
Letψ ∈ im(f∗) soψ = f∗φ for someφ ∈ HomR(A,M). Therefore g∗(ψ) = g ○ f ○φ. Note
that g ○ f = 0 since the first line is exact, therefore g∗ψ = 0 soψ ∈ ker(g∗).
Now letβ ∈ ker(g∗). Then g ○ β(x) = 0 for allx ∈M so Im(β) ⊂ ker(g). Takeh ∶= f−1 ∶
imf →M . IF we draw the scheme, we see thatα = h ○ β so thereforeβ = f ○ α = f∗α ∈
im(f∗)
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Lecture 14

Split exact sequences

Example:

1. 0→M
ι1Ð→M⊕P

π2Ð→ P → 0where ι1 ∶ x↦ (x,0) andπ2 ∶ (x, y)↦ y.

A SES is split/splits if ∃ anR−mod iso θN
≅Ð→M⊕P . S.t.

0 → M
fÐ→ N

gÐ→ P → 0
∣∣ ≅↓ θ ∣∣

0 → M
ι1Ð→ M⊕P

π2Ð→ P → 0

(a.14)

commutes
Examples:

1. Every SES ofK− vector spaces splits.

2. Nonexample: 0→ Z
[2]
Ð→ Z πÐ→ Z/2Zto0where

[2]means thatx↦ 2x andπ ∶ x↦ xmod2 is a non-split. Since if it is a split, then
must have that the middle termZmust be isomorphic toZ⊕Z/2Z since 2(0,1) =
(0,0), so the right group has an element of order 2, while the LHS does not
have an element of order 2.

Remark:
SES splits thenN ≅M⊕P but ... see conrad splitting of.. Example 1.4.
For splittness, it’s important and necessary that the maps in

0→M →M⊕P → P → 0 (Form 14.1)

are ι1 andπ2

If we have (Form 14.1)we see that we can also notice thatπ2○ι2 = idP andπ1○ι1 = idM .
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14.2 (Splitting) Lemma:

Let 0→M
fÐ→ N

gÐ→ P → 0 andP
hÐ→ N,N

jÐ→M SES Of R-mods, then following equiv.

1) above line splits

2)∃h ∈ HomR(P,N) s.t. g ○ h = idP

3)∃j ∈ HomR(N,M) s.t. j ○ f = idM

call h,j splittings of the line (Lem 14.2)

Proof:

2⇒ 1 Suppose 2), Letφ ∶M⊕P → N s.t. (x, y)↦ f(x)+h(y) thenφ ∈ HomR(M⊕P,N).
Claim:

0 → M
ι1Ð→ M⊕P

π2Ð→ P → 0
∣∣ ↓ φ ∣∣

0 → M
fÐ→ N

gÐ→ P → 0

Commutes, soφ ○ ι1 = f andπ2 = g ○ φ since then we have g(f(x) + h(y)) =
g(f(x))+g(h(y)) = 0+y. where the 0 follows from thatN is exact, and the y follows
from the condition that g ○ h = idP .
It follows thatφ is an isomorphism by exercise 2 on HW sheet 4, therfore we get
indeed 1) By using θ ∶= φ−1

1⇒ 2 Suppose∃θ ∶ N → M⊕P isomorphism s.t. (a.14) commutes. defineh ∶ P →
N s.t. y ↦ θ−1(ι2(y)) therefore g○h(y) = g(θ−1(0, y))by commutative of diagram,
π2 ○ θ = g therefore g(θ−1(0, y)) = π2(θ(θ−1(ι2(y)))) − π2(ι2(y)) = y so we get
indeed g ○ h = idP

Note that 1⇒ 3 is similair to 1⇒ 2 and 3⇒ 1 is similair to 2⇒ 1.
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Lemma 14.3:

supp.N
gÐ→ P,P

hÐ→ N are R-mod-homs s..t. g ○ h = idP Then

1) g surjective

2)0→ ker(g) ιÐ→ N
gÐ→ P → 0 is exact

3)N ≅ ker(g)⊕P = ker(g)⊕ im(g) (Lem 14.3)

We callh a section of g.
Proof:

1. ∀y ∈ P,∃z ∈ Y s.t. g ○h(z) = ywe see that we can take z = y. So ∃x ∈ N s.t. g(x) =
y so g is indeed surjective (Wherex = h(y))

2. By 1, and that there is always an SES by the image of g.

3. ≅ by (Lem 14.2) from2⇒ 1, = by N = im(g)

Projective modules

P
↓ h

M
fÐ→ N → 0

,withh ∈ HomR(P,N)&row exact (cond 14.4)

If all (cond 14.4) holds, thenP isprojective if there ∃h̃ ∈ HomR(P,M) s.t.h = f ○ h̃
(soh = f∗(h̃) soh ∈ imf∗), see last picture.

14.5 Proposition:

F freeR − mod⇒ F proj (Prop 14.5)

Proof:
F free, soF ≅⊕

i∈I
R. SinceF free, fix basis (bi) ofF . Consider diagram like (cond 14.4)

, ∀i ∈ I,∃xi ∈ M s.t.h(bi) = f(xi). Define h̃(bi) = h(bi). Now extend h̃ linearly
to h̃ ∈ HomR(F,M) then f ○ h̃ = h.

Extend linearly: ∀z ∈ F,∃!(λi)i∈I for all i ∈ R s.t. z = ∑
i∈I
λibi. Define h̃(z) = ∑λih̃(bi).

Here we have finitely manyλi nonzero. (So z is finite sum).
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Lemma 14.6

∀R − modM,∃freeR − mod F&π ∈ HomR(F,M) surjective, so we haveF
πÐ→M → 0
(Lem 14.6)

Proof:

F = ⊕
x∈M

R is free with basis (ex) s.t.x ∈M . Where (ex)y = δxy =
⎧⎪⎪⎨⎪⎪⎩

1 ifx = y
0otherwise

Then defineπ(ex) = x and extend linearly, and we can observe that thisπ is indeed
surjective.

Note that ifF =⊕
i∈I
R if I = {1,2,3} thenF = R⊕R⊕R = R3.

ThereforeF = ⊕
x∈M

R

⎧⎪⎪⎨⎪⎪⎩

= R∣M ∣ if ∣M ∣ <∞
submod ofRN if ∣M ∣ =#N

Theorem 14.7:

following equivalent

1)P projective

2) every SES withP at the end splits

3)∃ freeR − modF&anR − modQ s.t.F = P⊕Q (Thm 14.7)

Proof:

1⇒ 2 By Lemma from L13, 2 follows from following claim: Every SES 0→ ker(g)→
N

gÐ→ P → 0 splits.
Proof of claim:

Consider

P
↓ idP

N
gÐ→ P → 0

thenP projective, implies ∃h̃ ∶ P → N s.t. g ○ h̃ =

idp. Then by splitting Lemma, we get 2.

2⇒ 3 Suppose 2, by (Lem 14.6), ∃ freeF and SES 0→ ker(π) ιÐ→ F
πÐ→ P → 0. ThenF ≅

ker(π)⊕P , which is even more precies then part 3).

3⇒ 1 . Suppose 3), LetF ≅ P ⊕Q, be free consider (cond 14.4), then sinceF projective,
we can repaceP byP +Q, so we see that∃h̃′ ∶ P ⊕Q→M . But we want h̃ ∶ P →
M . Therefore use that ι1 ∶ P → P ⊕Q and h̃′ ∶ P ⊕Q → M then we can de-
fine h̃ ∶= h̃′ ○ ι1.
Now observe f ○ h̃ = f ○ h̃′ ○ ι1 = h ○ π1 ○ ι1 = h ○ idP so this implies 1)
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Exercise:

1. EveryK− vector space is projective.

2. RPID⇒ every projectiveR−mod is free, by 3 of (Thm 14.7), since every sub-
mod of a freeR−mod is free.

3. Claim:Z/2Z is not a freeZ/6Z−mod. This is because a free modulo ofZ/6Z is
of order infinity or a factor of 6.
But it is projZ/6Z sinceZ/6Z ≅ Z/2Z×Z/3Z. SinceZ/6Z is a freeZ/6Zmodulo,
we can write this asZ/2Z⊕Z/3Z.

4. If the modulo on the right isR, then the sequence must split.
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Lecture 15

R commutative ring
Extra curriculum:

FixR−modA. Then anyR−mod, M gives thatHomR(A,M) isanR ,mod.

S.t. f ∶M → N,φ ∶ A→M and f∗φ = f ○ φ ∶ A→ N is associative diagram.

ACategory C consists of objects (ob(C)), morphisms,(mor(C) between objects

A
fÐ→ B whereA,B ∈ C.

Morphism: or arrows, that has domains and codomains.
In this case, write f ∈ hom(A,B) (This does not imply that f is a homomorphisms,
only a morphism fromA toB.)

∃map ○ ∶ Hom(A,B) ×Hom(B,C)→ Hom(A,C)with (f, g)↦ g ○ f
This is:

� ○ is associative

� ∀A ∈ ob(C),∃idA ∈ hom(A,A) s.t.∀f ∈ Hom(A,B)we have idB ○ f = f = f ○ idA

Example:
C Ob(C) mor(C)
set sets maps

R-mod R−mods R−mod-homs
Group Groups Group homomorphisms

Top Topology spaces cont. functions

Rel Sets Relations
Rel, stands for all sets with relations (For exampleHom(A,B) = {R ⊂ A ×B})
R ⊂ A ×B,S ⊂ B × S ⇒ S ○R = {(a, c) ∈ A ×C ∶ ∃b ∈ B ∶ (a, b) ∈ R&(b, c) ∈ S}

FunctorF ∶ C1 → C2 is a ”morphism between categories”, i.e.,

� F (ob(C1)) ⊂ ob(C2)

� F (mor(C1)) ⊂mor(C2)

� F (idA) = idF (A)

� F (f ○ g) =
⎧⎪⎪⎨⎪⎪⎩

F (f) ○ F (g) call F covariant or

F (g) ○ F (f) call F contravariant
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Example:

Forgetful functor R-mod→set s.t.
,M R-mod↦M as a set and f ∈ HomR(A,B)↦ f ∶ A→ B as map.
Also works for example for groups,Top
This function is Covariant.

Hom-functor FixRmodA s.t. HomR(A,−) ∶ R-mod→ R-mod s.t.M ↦ HomR(A,M) and
for f ∈ HomR(M,N)we have f ↦ f∗with f∗ ∈ HomR(HomR(A,M),HomR(A,N))

A functionF R-mod→R-mod isLeft exact if for all exact sequences

0→M
fÐ→ N

gÐ→ P also the sequence 0→ F (M)
F (f)
ÐÐ→ F (N)

F (g)
ÐÐ→ F (P ) is exact.

A functionF R-mod→R-mod isLeft exact if for all exact sequences

M
fÐ→ N

gÐ→ P → 0 also the sequenceF (M)
F (f)
ÐÐ→ F (N)

F (g)
ÐÐ→ F (P )→ 0 is exact.

F isExact if it is left and right exact.

Recall:HomR(A,−) is left exact, but in general not right exact.

Theorem 15.1:

AR-mod, thenHomR(A,−) is right exact iffAprojective (Thm 15.1)

Proof⇐
SupposeAprojective, LetM

fÐ→ N
gÐ→ P → 0. We want that

� ∶ HomR(A,M)
f∗Ð→ HomR(A,N)

g∗Ð→ HomR(A,P )→ 0 is exact.

g∗ is surjective: Letφ ∈ HomR(A,P ). Consider

A
↙ ∃h ↓ φ

N
gÐ→ P → 0

soA projective

hence∃h ∈ HomR(A,N) s.t.φ = g ○ h = g∗h (so found pre-image namelyh)

imf∗ ⊂ ker(g∗ follows from g ○ f = 0

ker(g∗ ⊂ im(f∗) Letψ ∈ ker(g∗) i.e. g ○ ψ = 0 so
,imψ ⊂ ker(g), but we saw that ,ker(g) = imf , since original sequence is exact.

Consider

A
↙ ∃h ↓ ψ

M
fÐ→ im(f) → 0

sinceA projective, ∃h ∈ HomR(A,M) s.t.ψ =

f ○ h = f∗h soψ ∈ imf∗.

Therefore we see that � is exact.
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Proof⇒

SupposeA is not projective, ⇒ ∃ diagram
A
↓ φ

N
gÐ→ P → 0

s.t. ∄h ∈ HomR(A,N)

withφ = g ○ h. i.e.φ ∈ HomR(A,P ) ∖ im(g∗) so ker(g)
ιÐ→ N

NÐ→ gÐ→ P → 0 is exact

butHomR(A,ker(g))
ι∗Ð→ HomR(A,N)

g∗Ð→ HomR(A,P )→ 0 is not exact.

Snake Lemma:
Forα ∈ HomR(A,A′), def. coker(α) = A′/im(α) = A′/α(A)
Consider comm. diagram of R-mod-homs, with exact rows (black), then∃ exact se-
quence (blue)

ker(α) fÐ→ ker(β) gÐ→ ker(γ)
↓ ι ↓ ι ↓ ι

0 → A
fÐ→ B

gÐ→ C → 0
↓ α ↓ β ↓ γ

0 → A′
f ′Ð→ B′

g′Ð→ C ′ → 0
↓ π ↓ π ↓ π

coker(α) f̃ ′Ð→ coker(β) g̃′Ð→ coker(γ)

and δ ∶ ker(γ)→ coker(α)

Where f ∶ ker(α) → ker(β) is well defined, sincex ∈ ker(α) ⇒ β(f(x)) = f ′(α(x)) =
0 since commutative, so f(x) ∈ ker(β)
Similarly g ∶ ker(β)→ ker(γ) is well-defined.
f̃(y + α(A)) = f ′(y) + β(B) is well-defined, since if y ∈ α(A) say y = α(x) forx ∈ A,
then f ′(y) = β(f(x)) ∈ β(B).
Similarly g̃′ is well-defined.
δ is called connecting homomorphism,δ ∶ ker(γ) → coker(α) for c ∈ ker(γ),there ex-
ists b ∈ B s.t. g(b) = c since g is surjective ( g is not necessarily surjective).
Since c ∈ ker(γ), we see that g′(β(b)) = 0, by commutative diagram, soβ(b) ∈ ker(g′).
Since exactness, we see that ker(g′) = im(f ′) so ∃a′ ∈ A s.t.β(b) = f ′(a′).
Define δ(c) = π(a′) = a′ + α(A)
δ is well-defined, since f ′ is injective, we see there exists unique a′ ∈ A′ s.t. f ′(a′) = β(b).
Furthermore we must have δ indep. of choice of b. Suppose b1 ∈ B s.t.] g(b1) = c.
Therefore b − b1 ∈ ker(g),so,b − b1 ∈ im(f). Therefore exists unique a ∈ A s.t. f(a) =
b − b1. Soβ(b) − β(b1) = f ′(α(a)), so if a′1 ∈ A′ s.t. f ′(a′1) = β(b1). Then a′ − a′1 ∈
α(A),soπ(a′) = π(a′1) , so indep. of choices of b.

Complete Proof in Top’s notes.
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R commutative ring, M,N,S R-mods, then b ∶M ×N → S isbilinear, if
∀m ∈M,∀n ∈ N , we have thatM → S s.t.x↦ b(x,n) andN → S s.t. y ↦ b(m,y) areR-
mod-homs.
Examples:

� Dot product

� Matrix multiplication

� Scalar products

� R ×M →M s.t. (a,m)↦ a ⋅m

ATensor product ofM&N (overR) is a pair (T,β), whereT is anR− and
β ∶M ×N → T bilinear, s.t.∀ pairs (S, b)whereS is anR−mod and

b ∶ M ×N → S bilinear, then∃!f ∈ HomR(T,S) s.t.
M × S bÐ→ S
↓ β ↗ f
T

is a commutative

diagram

Catch-up session 04-04-2024

Universal property Tensor products:
HomR−mod(M ⊗R N,L) ≅ Bilin(M ×N,L).

For example: R⊗RM ≅M
Note that Tensor product was extra curriculum.

TorR(M) = {x ∈M ∶ ∃0 ≠ r ∈ R ∶ rx = 0}
TorZ(Z⊕Z/2Z) = 0⊕Z/2Z
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NEED TO REMEMBER

L/K Seperable iff∀α ∈ L,minpol(α)has no multiple roots in SplK(minpol(α))

L/K normal iff∀α ∈ L,minpol(α) splits completely into linear terms overL.

Tor(M) ∶= {x ∈M ∶ ∃a ∈ R ∖ {0} ∶ ax = 0}
Ann(M) ∶= {a ∈ R ∶ ax = 0,∀x ∈M}
Ann(M) ≠ {0}⇒ Tor(M) =M .

Equivalent:

1. P projective.

P projective if we have

P
↓ h

m
fÐ→ N → 0

there exists h̃ ∈ HomR(P,M) ∶ h = f○h̃.

2. Every SES withP at the end, splits:

SES: 0→M
fÐ→ N

gÐ→ P → 0 s.t. im(f) = ker(g)
SES Splits, if∃θ ∈ Hom(N,M ⊕ P ) isomorphic s.t.

0 → M
fÐ→ N

gÐ→ P → 0
∣∣ ↓ θ ∣∣

0 → M
π1Ð→ M ⊕ P π2Ð→ P → 0

3. Exists freeRmodF,RmodQ s.t.F = P ⊕Q.
F is freeRmod s.t.∃I s.t.F =⊕

i∈I
R.

Note thatF free⇒F torsion free.
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