Advanced Algebraic Structures

Lenie (H.M.) Goossens S4349113

$1B\ 2023\hbox{-}2024$

Contents

Lecture 1	3
Introduction	3
Basic definition	3
Lecture 2	6
Normal Extensions	
Separable extensions	7
Lecture 3	9
Properties of separability	9
Lecture 4	12
Properties Galois extensions	12
Lecture 5	15
Galois correspondence	15
Lecture 5	18
Cyclotomic fields	18
Lecture 7	21
Extensions of \mathbb{F}_q	21
Cyclic extensions	21
Symmetric polynomials	

Advanced	Algebraic	structures,	University	z of	Groningen
ravanca	Tigoniaic	bul accual co.	O III V CI DI U	OI.	Oromingon

H.M. (Lenie) Goosse:

Lecture 8	24
Computing Galois group of polynomials	25
Algebraic closure of a field	25
Extra curriculum: Infinite Galois theory	26
Lecture 9	27
Homomorphism theorem	27
Submodules	29
Quotient modules	29
Lecture 10	30
Lecture 11	34
Universal property (UP) of direct sums	35
Modules over PID's	36
Lecture 12	37
Linear algebra over fields (normal forms of matrices)	38
Lecture 13	41
Exactness	41
Homomorphisms	42
Lecture 14	45
Split exact sequences	45
Projective modules	47
Lecture 15	5 0
Catch-up session 04-04-2024	53
NEED TO REMEMBER	54

Introduction

 $f = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \in \mathbb{Q}[X]$ polynomial. Q: "What are its roots?

n = 1 then $x - a \leftrightarrow x = a$

$$n = 2$$
 then $x^2 + px + q \Leftrightarrow x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$

n=3 then x^3+px^2+qx+r . We see that if we replace x by $x-\frac{p}{3}$. Then we get x^3+px+q . Discriminant $\Delta=\left(\frac{q}{2}\right)+\left(\frac{p}{3}\right)^3$. Then one root is $\sqrt[3]{-\frac{q}{2}}+\sqrt{\Delta}+\sqrt[3]{-\frac{q}{2}}-\sqrt{\Delta}$ This is called CARDANO FORMULA

n = 4 "solvable by radicals", i.e. there is a formula only involving $+, -, /, \sqrt[n]{...}$

 $n \ge 5$ then is not solvable by radicals in general. This is Abel Raffini Theorem Galois explained this in a conceptial way, also over general ground fields. Made shift from polynomials to field extensions.

Basic definition

K FIELD

$$K[x] = \{a_0 + a_1 x + \dots + a_n x^n | n \ge 0, a_i \in K\}$$

$$K(x) = \text{Quot}(K[x]) = \left\{ \frac{f(x)}{g(x)} | f, g \in K[X], g \ne 0 \right\}$$

PRIME FIELD OF A FIELD smallest subfield of $K = \begin{cases} \mathbb{Q} \operatorname{char}(K) = 0 \\ \mathbb{F}_p \operatorname{char}(K) = p > 0 \end{cases}$

L/K FIELD EXTENSION $L \supseteq K$.

 $[L:K] = \dim_K L$ which is DEGREE OF L OVER K

L/K finite iff $[L:K] < \infty$. Note that $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 < \infty$ and $[\mathbb{R}:\mathbb{Q}] = \infty$.

Tower law: L/M/K then $[L:K] = [L:M] \cdot [M:K]$.

 $A \subseteq L$ SUBSET then

- K[A] = smallest subring of L containing the field K and the set A.
- K(A) = smallest subfield of L containing the field KK and the set A.

 $a \in L$ Algebraic over K if $\exists 0 \neq f \in K[X]$ s.t. f(a) = 0.

If $a \in L$ Transcedental over K if $a \in L$ not algebraic over K.

Note that $\mathbb{Q}(\sqrt{\pi})/\mathbb{Q}$ is transcedental and $\mathbb{Q}(\pi)/\mathbb{Q}$ is transcedental but $\mathbb{Q}(\sqrt{\pi})/\mathbb{Q}(\pi)$ is algebraic.

 $0 \neq f \in K[X]$ MINIMAL POLYNOMIAL OF $a \in L$ over K if f is monic and has minimal degree. (irreducible and unique).

From Algebraic structures $K[X] \to K[a]$ with $x \mapsto a$ where a algebraic.

Then $K[X]/(f) \stackrel{\sim}{\to} K[a] = K(a)$ where f minimal polynomial.

Then $[K[a]:K] = \deg(f), K$ - basis of $k[a]:1, a, a^2, \dots, a^{\deg(f)-1}$.

L/K ALGEBRAIC $\Leftrightarrow \forall a \in L$ are algebraic over K.

L/K TRANSCENDENTAL if L/K is not algebraic.

Proposition:

L/K is finite $\Rightarrow L/K$ algebraic. $L \xrightarrow{f} L'$ -homomorphism iff $f|_K = \mathrm{id}_K$.

Proof

Arbitrary $x \in L$. Take $x^0, x^1, \dots, x^{[L:K]}$ are K-lin. dep. Here we use that

 $[L:K] < \infty$. Therefore we see that $\sum_{i=0}^{\infty} a_i x^i = 0$ so there exists a minimal polynomial.

So L/K is algebraic.

The converse is false: $\mathbb{Q}(\sqrt{2}, \sqrt[4]{2}, \sqrt[8]{2}, \dots]/\mathbb{Q}$ is infinite and algebraic.

 $a \in L$ where L/K transcendental then $K[a] \cong K[X]$ polynomial ring and $K(a) \cong K(X)$ field of rational functions over K.

L, L' field extensions of field K then a K HOMOMORPHISM $L \to L'$ is field homomorphism $\phi: L \to L'$ s.t. $\phi|_K = \mathrm{id}_K$.

K ISOMORPHISM bijective K- homomorphism. L, L' are K- isomorphic ($L \cong_K L'$) if – isomorphism $L \to L'$ exists. K- automorphism if K- isomorphism with L = L'.

Example:

 $\tau: \mathbb{C} \to \mathbb{C}$ with $z \mapsto \overline{z}$. \mathbb{R} - automorphism is $\operatorname{Aut}_{\mathbb{R}}(\mathbb{C}) = \{\operatorname{id}_{\mathbb{C}}, \tau\}$ but $\operatorname{Aut}(\mathbb{C})$ is uncountable.

K field and $0 \neq f \in K[X]$ then L/K splitting field of f over k iff

i $f = \prod_{i=1}^{n} (x - \alpha_i) \in L[x]$ splits completly into linear factors

ii
$$L = K(\alpha_1, \ldots, \alpha_n)$$
.

Proposition 1.1 (I.3.2)

- 1) \exists splitting field $L/K\&[L:K] \leq \deg(f)!$
- 2) A splitting field L/K is unique up to K isomorphism (Prop 6.5/AS Top III.5.4)

Proof:

- 1. Induction on degree of f. If $\deg(f) = 1$, then L = K is splitting field. Otherwise take irreducible fact $f_1|f$ then $K[X]/(f_1)$ is a field extension of K of degree $\deg(f_1) \leq \deg(f)$ and $f_1(\overline{x}) = 0$. Now do induction with $\frac{f}{(x-\overline{x})} \in L[X]$.
- 2. For induction prove slightly more general statement. $\phi_0 \to \phi_0 : K_1[X] \xrightarrow{\sim} K_2[X]$ with $\sum a_i x^i \mapsto \sum \phi_0(a_i) x^i$. $K_1 \xrightarrow{\sim} K_2$ by ϕ_0 s.t. $0 \neq f_1 \in K_1[X] \to f_2 = \phi_0(f_1) \in K_2[X]$. Then L_i/K_i splitting fields of f_i for i = 1, 2. Then there exists ϕ s.t. $L_1 \xrightarrow{\sim} L_2$ by ϕ , Which implies uniqueness by taking $K_1 = K_2 = K$, $\phi_0 = \mathrm{id}_K$.

We proof this by induction.

If f_1 constant, take $L_i = K_i$.

Otherwise take $\phi_1|f_1$ irreducible. Since isomorphic with ϕ_0 we see that $\phi_2 = \phi_0(\phi_1) \in K_2[X]$.

 L_i/K_i splitting field: $\exists \alpha \in L_1 \text{ s.t. } \phi_1(\alpha) = 0, \text{ and } \exists \beta \in L_2 \text{ s.t. } \phi_2(\beta) = 0.$ So we see that $K_1[\alpha] \xrightarrow{\sim} K_2[\beta] : \sum a_i x^i \mapsto \sum \phi_0(a_i) \beta^i$.

By induction can extend ϕ_1 to $\phi: L_1 \xrightarrow{\sim} L_2$.

Example:

 $K = \mathbb{Q}, f = x^3 - 2$, splitting field $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$. Then $f = (X - \sqrt[3]{2}) \cdot f_2 \in \mathbb{Q}(\sqrt[3]{2})[X]$. Note that f_2 has roots in $\mathbb{C} \setminus \mathbb{R}$ while $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$.

Now note that the other roots of $x^3 - 2$ are $\zeta_3 \sqrt[3]{2}$, $\zeta_3^2 \sqrt[3]{2}$. So then $\mathbb{Q}(\sqrt[3]{2}, \zeta_3 \sqrt[3]{2})/\mathbb{Q}$ is a splitting field of degree $3 \cdot 2 = 3!$.

Normal extensions

L/K NORMAL iff $\forall f \in K[x]$ that has root in L : f splits over L iff $\forall \alpha \in L : \text{minpol}_K(\alpha)$ splits over L.

 $H \leq G$ subgroup and $[G:H] = 2 \Rightarrow H \leq G$ i.e. $H = gHg^{-1}$ for all $g \in G$. $\mathrm{Spl}_M(\alpha)$ is splitting field of α over M.

Theorem 2.1 (Bianchi 3.6):

L/K finite then following equivalent:

1)L/K normal

 $(2)L = \operatorname{spl}_K(g)$ for some $g \in K[x]$ (Thm 2.1/Bianchi 3.6)

Proof:

 $1 \Rightarrow 2$ $L = K(\alpha_1, \ldots, \alpha_n)$ since L/K finite. Def. $f_i := \operatorname{minpol}_K(\alpha_i)$ which splits over L, since normal. Define $g := \prod_{i=1}^n f_i$. Therefore $L = K(\alpha_1, \ldots, \alpha_n) \subseteq \operatorname{Spl}_K(g) \subseteq L$. For this we must have equality throughout

 $2 \Rightarrow 1 \quad \alpha \in L, f \coloneqq \operatorname{minpol}_K(\alpha), M \coloneqq \operatorname{Spl}_L(f) \supseteq L. \text{ Want } M = L. \text{ Let } \beta \in M : f(\beta) = 0.$ From lecture 1:

Hence $[L:K] = [L(\beta):K]$, hence $\beta \in L$. Therefore $M \subseteq L$. Since we defined M in such a way that $M \supseteq L$, we see that we get L = M.

Example:

 $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \operatorname{Spl}_{\mathbb{Q}}((X^2 - 2)(X^2 - 3))/\mathbb{Q} \text{ normal}$

 $\operatorname{Spl}_{\mathbb{Q}}(X^3-2)=\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}$ normal

 $\mathbb{F}_p(t^{1/p}) = \operatorname{Spl}_{\mathbb{F}_p(t)}(X^p - t)/\mathbb{F}_p(t)$ normal.

Warning: normality is not transitive, i.e. if we have L/M normal, M/K normal then it does not imply that L/K is normal.

Warning: Distinguish $Aut_K(L)$ as field extensions or as vector space.

Separable extensions

- 1. $0 \neq f \in K[x]$ separable iff f hs no multiple roots in $Spl_K(f)$
- 2. $\alpha \in L$ separable over K iff minpol_K (α) separable.
- 3. L/K separable iff all $\alpha \in L$ separable over K

Non-example:

- $\mathbb{F}_p(t^{1/p})/\mathbb{F}_p(t)$ not separable since $X^p t = (X t^{1/p})^p$
- [L:K] = 2 not separable iff char(K) = 2 and $L=K(\sqrt{d})$ with $d \in K \setminus K^{\square}$ where $K^{\square} = \{k \in K | \exists z \in \mathbb{Z}; z^2 = k\}$

This is because $\alpha \in L$ then $\operatorname{minpol}_K(\alpha) = (X - \alpha)(X - \overline{\alpha}) = X^2 - pX + q$ where $p = \alpha + \overline{\alpha}$, $q = \alpha \overline{\alpha}$. Since α not separable over K iff $\alpha = \overline{\alpha}$ therefore $p = 2\alpha \in L$.

Example:

 $X^2 + X + 1 \in \mathbb{F}_2[X]$ irreducible and separable.

K field, then

$$(-)': K[X] \to K[X]$$
 s.t. $f = \sum_{i \ge 0} a_i x^i \mapsto f' \coloneqq \sum_{i \ge 1} i a_i x^{i-1}$

Proposition 2.2

 $f, g \in K[X]$ then:

- 1) formal derivative is K – linear (as vector space)
- 2) Leibniz Rule: (fg)' = f'g + fg'
- 3) root α of f is SIMPLE: (#roots(α) = 1 iff $f'(\alpha) \neq 0$ (Prop 2.2)

Example:

$$(X^{p}-t)'=pX^{p-1}=0 \text{ if } char(K)=p>0.$$

K is PERFECT iff $K = K^p := \{x^p : x \in K\}$ iff frobenius norm is surjective.

Theorem 2.3 (Bianchi 4.4)

L/K finite is SEPARABLE if

- $1)\operatorname{char}(K) = 0, \operatorname{or}$
- 2) $\operatorname{char}(K) = p > 0$ and $p \not \mid [L:K]$ or
- 3) $\operatorname{char}(K) = p > 0$ and $K = K^p$ (Thm 2.3/Bianchi 4.4)

Proof:

 $\alpha \in L, f = \operatorname{minpol}_K(\alpha). \ \beta \in M : f(\beta) = 0, f = \operatorname{minpol}_K(\beta).$ If β not simple root $\Rightarrow f'(\beta) = 0$ hence f' = 0 so f irreducible. If $\operatorname{char}(K) = p \Rightarrow f \equiv a_0$ contradiction. $\operatorname{char}(K) = p \Rightarrow f = g(x^p)$ hence $p|[K(\alpha) : K]|[L : K].$ $K = K^p, f = g(x^p) = h(x)^p$ reducible, contradiction.

Therefore the following Corollary:

L/K finite only INSEPARABLE if char(K) = p > 0 is not perfect & p|[L:K] (Cor 2.4)

Proposition 2.5 (transitivity of separability)

L/M/K then following equivalent

- 1) L/K separable
- 2) L/M & M/K separable (Prop 2.5)

 $K \subseteq L, M \text{ then } \operatorname{Hom}_K(L, M) = \{\phi : L \to M \text{ field hom. s.t. } \phi|_K = \operatorname{id}_K \}$

Properties of separability

L/K is normal field extension iff $\forall \alpha \in L$ the minpol_K(α) splits completly over L L/K is SEPARABLE FIELD EXTENSION iff $\forall \alpha \in L$, the minpol_K(α) does not have multiple roots in a splitting field of f.

Example L/K is separable if $\operatorname{char}(K) = 0$ or $\operatorname{char}(K) = p > 0$ and K is perfect, i.e. $K = K^p = \{a^p | a \in K\}$

Note that this is not an iff statement. As in $\mathbb{F}_{p^n}(t)/\mathbb{F}_p(t)$ of degree n, is separable, while $\mathbb{F}_p(t)$ is not perfect.

Lemma 3.1:

 $K(\alpha)/K$ finite simple (gen. by 1 element) field extension, M/K some extension 1 natural bijection $\operatorname{Hom}_K(L(\alpha), M) \xrightarrow{\sim} \{\operatorname{roots} \ \operatorname{of} f \ \operatorname{in} M\}$ with $f = \operatorname{minpol}_K(\alpha)$ $\xrightarrow{\sim}$ is canonical hom. with $\operatorname{Hom}_K(K(\alpha), M) \ni \varphi \mapsto \varphi(a)$ 2# $\operatorname{Hom}_K(K(\alpha), M) \le \deg(f) = [K(\alpha) : K] < \infty$ 3 f separable, splits over $M \Rightarrow \#\operatorname{Hom}_K(K(\alpha), M) = [K(\alpha) : K]$ (Lem 3.1)

Proof of 1:

$$\operatorname{Hom}_{K}(K(\alpha), M) \xrightarrow{\sim} \operatorname{Hom}_{K}(K[x]/f, M) \xrightarrow{\sim} \{g : \operatorname{Hom}_{K}(K[x], M) | g(f) = 0\}$$

$$\downarrow^{\sim}$$

$$K[x]/(f)$$

Therefore $\beta \in M | f(\beta) = 0$, so $f \subseteq \ker(g) \Leftrightarrow x \mapsto \text{root of } f \text{ in } M$. 2,3 direct consequence of 1.

Proposition 3.2:

L/K finite, M/K some field extension.

- 1) $\# \operatorname{Hom}_K(L, M) \leq [L:K] < \infty$
- 2) L/K inseparable then $\#Hom_K(L, M) < [L:K]$
- 3) L/K separable $\Rightarrow \exists M \text{ s.t. } \# \text{Hom}_K(L, M) = [L : K]$ so M separates roots of minpols of $\alpha \in L$ (Prop 3.2)

Proof:

- 1. Induction on [L:K]. Base case: L = K then okay. Let $\alpha \in L \setminus K$. By Lemma $\# \operatorname{Hom}_K(K(\alpha), M) \leq [K(\alpha):K]$. By induction every $\sigma : K(\alpha) \hookrightarrow M$ has at most $[L:K(\alpha)]$ extensions to $L \hookrightarrow K$. Therefore $\# \operatorname{Hon}_K(L,M) \leq [L:K(\alpha)][K(\alpha):K] = [L:K]$.
- 2. Take $\alpha \in L$ inseparable over K. By Lemma, we see then $\# \operatorname{Hom}_K(K(\alpha), M) < [K(\alpha) : K]$. Hence from 1, we see that $\# \operatorname{Hom}_K(L, M) < [K(\alpha) : K][L : K(\alpha)] = [L : K]$.
- 3. $L = K(\alpha_1, \ldots, \alpha_n)$ and let $f_i \coloneqq \operatorname{minpol}_K(\alpha_i)$, separable over K. Let M' split all f_i . Claim this M works (i.e. M = M'). Proof by induction. By Lemma we see for n = 1, we have f_1 which splits over M, so $\#\operatorname{Hom}_K(K(\alpha_1), M) = [K(\alpha_1) : K]$. $\forall \sigma : K(\alpha_1) \hookrightarrow M$ count number of extensions. $\tilde{\sigma} : L \hookrightarrow M$. Claim: Exactly $[L : K(\alpha_1)]$ extensions. Extension means commutative diagram. So if $iota : K(\alpha_1) \to L, \sigma : K(\alpha_1) \to M$ and $\tilde{\sigma} : L \to M$ then $\sigma = \tilde{\sigma} \circ \iota$. Need to verify htat $g_i \coloneqq \operatorname{minpol}_{K(\alpha_1)}(\alpha_i)_{i \ge 2}$ splits under σ in M in order to apply the induction hypothesis. $g_i|f_i \in K[X]$ then $\sigma(g_i)|\sigma(f_i) = f_i \in K[X]$. f_i splits over M hence also $\sigma(g_i)$. I.e.., the induction hypothesis is satisfied, so M = M'. Therefore $\#\operatorname{hom}_K(L, M) \ge [L : K(\alpha)] \cdot [K(\alpha) : K] = [L : K]$. Since we already had $\#\operatorname{Hom}_K(L, M) \le [L : K]$ we see that $\#\operatorname{Hom}_K(L, M) = [L : K]$.

Theorem 3.3:

L/K finite so $L = K(\alpha_1, \dots, \alpha_n)$ if α_i separable over $K \Rightarrow L/K$ separable (Thm 3.3)

Proof:

From (Prop 3.2).3 we see that $\exists M/K \text{ s.t. } \#\text{Hom}_K(L, M) = [L:K]$, therefore by (Prop 3.2).2 L/K is separable.

Corollary:

A splitting field of a separable polynomial f is separable.

Proof:

 α_i root of f, and $f_i := \min_{K}(\alpha_i)|f$. Then since f sep., we see that f_i sep. So by (Thm 3.3) L/K sep.

L/K finite is GALOIS iff /K is normal and sep. (Note that this is also Bianchi 5.10) We can define it for alg. field extensions.

Proposition 3.4 (Bianchi 5.4):

L/K finite then following equivalent

1)L/K Galois

2)L splitting field of sep polynomial over K (Pro

(Prop 3.4/Bianchi 5.4)

Proof:

- $1 \Rightarrow 2$ Normality criterion $\Rightarrow L = \mathrm{Spl}_K(f), f \in K[x]$. Now assume $f = \prod_{i=1}^n f_i$ where f_i irreducible and square free factorization. $L = \mathrm{spl}_K(f)$ so split over l,, so f_i have root in L. Since sep. we see f_i have only simple roots, we see that since $f = \prod_{i=1}^n f_i$ is sep.
- $2 \Rightarrow 1$ $L = \mathrm{Spl}_k(f) \Rightarrow L/K$ is normal by normal criterion. By Corollary above, we see that since $L = \mathrm{spl}_K(f)$ we have sep.

Lemma 3.5:

$$L/K$$
 algebraic field extension $\Rightarrow \operatorname{Hom}_K(L, L) = \operatorname{Aut}_K(L)$ (Lem 3.5)

Proof:

Every field hom. is injective. So only have to show that $\operatorname{Hom}_K(L,L)$ is surjective.

 $[L:K] < \infty$ we see that it is already clear since tehn surjective automatically follows. So we just need to reduce to finite extensions.

Let $\phi \in \text{Hom}_K(L, L)$. Let $\alpha \in L$. Then since L/K is algebraic, $\exists 0 \neq f \in L[x] : f(\alpha) = 0$. Then $V_L(f) = \{\beta \in L | f(\beta) = 0\}$ which is the vanishing set of f in L. We see that this set is finite.

Claim: $\phi(V_L(f)) \subseteq V_L(f)$.

 $\phi: V_L(f) \to V_L(f)$ is injective because ϕ is VL(f) finite, so therefore $\phi: V_L(f) \xrightarrow{\sim} V_L(f)$. Therefore $\forall \alpha: \phi: L \to L$ surjective so automorphism.

Let
$$f = \sum_{i=0}^{n} a_i x^i$$
 then $\phi(f(\beta)) = g\left(\sum_{i=0}^{n} \alpha_i \beta^i\right) = \sum_{i=0}^{n} \phi(\alpha_i)\phi(\beta)^i$. Since $\phi|_K = \mathrm{id}_K$ we see that $\phi(f(\beta)) = \sum_{i=0}^{n} \alpha_i \phi(\beta)^i$ so $\phi(\beta \in V_L(f))$.

 $V_L(f) = \{ \beta \in L | f(\beta) = 0 \}.$

Note

Any M/K s.t. $\forall \alpha \in L$: minpol $_K(\alpha)$ splits without multiple factors, satisfies $\# \text{Hom}_K(L, M) = [L : K]$.

We see that in the lecture Lemma 4.1, is in fact (Lem 3.5)

Properties Galois extensions

Proposition 4.2 (Bianchi 5.8)

L/K finite then following equivalent

1) L/K Galois

2)
$$\#Gal(L/K) = \#Aut_K(L) = [L:K]$$
 (Prop 4.2/Bianchi 5.8)

Proof:

$$1 \Rightarrow 2$$
 note that $[L:K]$ $\stackrel{\text{prop}}{=}$ $^{1} L^{3} \# \text{Hom}_{K}(L,L) \stackrel{L4.1}{=} \# \text{Aut}_{K}(L)$.

 $2\Rightarrow 1 \quad \text{TBS:} \forall \alpha \in L \text{ we must have } f = \text{minpol}_K(\alpha) \text{ splits without multiple factors}$ over $L \Leftrightarrow \#V_L(f) = \deg(f) = [K(\alpha):K]$. Note that $\#V_L(f) \cong \#\text{Hom}_L(K(\alpha),L)$. Take arbitrary $\sigma \in \text{Hom}_L(K(\alpha),L)$. Then σ extends to at most $[L:K(\alpha)]$ exittesions to L. $\#\text{Hom}_K(L,L) = \#\text{Aut}_K(L) = [L:K]$. Note that $\#\text{Hom}_K(L,L) = \#V_L(f)[L:K(\alpha)] \leq \deg(f) \cdot [L:K(\alpha)] = [K(\alpha):K][L:K(\alpha)] \leq [L:K]$. Since [L:K] = [L:K] we get that $\#V_L(f) = \deg(f) = [K(\alpha):K]$ which implies that $\forall \alpha \in L$, minpol $_K(\alpha)$ splits into linear terms without multiplicity in L.

For L/K galois, Galois Group $Gal(L, K) = Aut_K(L)$ with composition as group low. So $Gal(L, K) = \{\sigma : L \to L | \sigma|_K = id_K \}$ since extension is finite, we see that group is finite, and #Gal(L/K) = [L : K]

Galois group of separable polynomial, is the galois group of a splitting field. If 2 field extensions L/L, L'/K with $\phi: L \to L'$ isomorphic, then $\phi_* \operatorname{Gal}(L/K) \xrightarrow{\sim} \operatorname{Gal}(L'/K)$ We see that $g_*(\sigma): L' \xrightarrow{\phi^{-1}, \sim} L \xrightarrow{\sigma, \sim} L \xrightarrow{\phi, \sim} L'$ so $L' \to L'$ is isomorphic.

Lemma 4.3 (Bianchi 5.5):

L/Kfinite Galois ext., $K \subset F \subset L$ interm. field ext. $\Rightarrow L/F$ Galois (Lem 4.3/Bianchi 5.5)

Do not really understand what happens in next section:

L/K arbitrary field extensions, then $\operatorname{Aut}_K(L) = \{\sigma : L \xrightarrow{\sim} L \text{ s.t. } \sigma|_K = \operatorname{id}_K \}$ If we have L/M/K then $\operatorname{Aut}(L) = \sigma|_M = \operatorname{id}|_M \Longrightarrow \sigma|_K = \operatorname{id}_K$. $\operatorname{Aut}_M(L) \le \operatorname{Aut}_K(L)$

- Therefore well-defined map $\{M|L\supseteq M\supseteq K\}\to \{\text{subgroups of } \operatorname{Aut}_K(L)\}$ s..t. $M\mapsto \operatorname{Aut}_M(L)$.
- If $M' \subseteq M$ then $\operatorname{Aut}_M(L) \le \operatorname{Aut}_{M'}(L)$ Note that this map is bijective if L/K finite Galois with inverse function: $H \le \operatorname{Gal}(L/K) \mapsto L^H = \{\alpha \in L | \sigma(\alpha) = \alpha, \forall \sigma \in H\}.$
- $M = L \operatorname{then} \operatorname{Aut}_L(L) = \{ \operatorname{id}_L \}.$
- M = K then $Aut_K(L)$ is full group.

We want that $L^{\text{Aut}_K(L)} = K$. We need to use L/K Galois, because otherwise it is false.

If $L = \mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal, $\operatorname{Aut}_{\mathbb{Q}(L)} = \{\sigma : L \xrightarrow{\sim} L | \sigma|_L = \operatorname{id}_L \}$ therefore we see that $\sigma(\sqrt[3]{2}) = \zeta_3^i \sqrt[3]{2}$. Note that since $\sigma(\sqrt[3]{2}) \in L \subseteq \mathbb{R}$ we see that $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}$. Therefore σ fixes a generator $\sqrt[3]{2}$ of L therefore $\sigma = \operatorname{id}_L$ therefore $\operatorname{Aut}_{\mathbb{Q}}(L) = \{\operatorname{id}\}$ therefore $L^{\operatorname{Aut}_{\mathbb{Q}}(L)} = L \supseteq \ldots$

If $L = \mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ then $\sigma(\sqrt{2}) = \sigma(\sqrt[4]{2}) = \sigma(\sqrt[4]{2})^2 = (\pm \sqrt[4]{2})^2 = \sqrt{2}$ therefore we see ... L/K not separabe so $L = \mathbb{F}_p(t^{1/p})/\mathbb{F}_p(t) = K$, where $L = \mathrm{Spl}_K(X^p - t)$ with $\sigma \in \mathrm{Aut}_K(L)$ maps roots of $X^p - t$ to roots. There is exactly one root $X^p - t = (X - t^{1/p})^p$. Therefore $\mathrm{Aut}_K(L) = \{\mathrm{id}_L\} \Rightarrow L^{\mathrm{Aut}_K(L)} = L \not\supseteq K$. Corollary 4.4 (Bianchi 5.9):

L/K finite then following equivalent:

1) L/K Galois

$$20 L^{\text{Aut}_K(L)} = K$$
 (Cor 4.4/Bianchi 5.9)

Proof:

 $1 \Rightarrow 2 \ \forall \alpha \in L, \forall \sigma \in \operatorname{Aut}_K(L), \sigma(\alpha) = \alpha \text{ therefore } \alpha \in K.$

Let $\alpha \in L^{\operatorname{Aut}_K(L)} \Rightarrow \operatorname{Aut}_K(L) \leq \operatorname{Aut}_{K(\alpha)}(L)$.

Since $K \subseteq K(\alpha)$ by the inclusion rev. We have $\operatorname{Aut}_{K(\alpha)}(L) \leq \operatorname{Aut}_{K}(L)$

so $\operatorname{Aut}_{K(\alpha)}(L) = \operatorname{Aut}_{K}(L)$

Therefore $[L:K(\alpha)] = \#\mathrm{Aut}_{K(\alpha)}(L) = \#\mathrm{Aut}_{K}(L) = [L:K].$

Therefore $[K(\alpha):K] = 1$ by tower law so $\alpha \in K$. Which is what we wanted to show.

 $2 \Rightarrow 1$ $G = \operatorname{Aut}_K(L)$. Show $\forall \alpha \in L$, we have $f = \operatorname{minpol}_K(\alpha)$ splits into multiple factors in L.

Define $g := \prod_{\sigma \in G} (X - \sigma(\alpha)) \in L[X]$. Claim: $g \in K[X]$ where $K = L^g$. $\forall \tau \in G$ we have $\tau g = \prod_{\sigma \in G} (X - \tau \sigma(\alpha)) = \prod_{\sigma \in \tau G} (X - \sigma(\alpha)) = \prod_{\sigma \in G} (X - \sigma(\alpha)) = g$. i.e., τ permutes the roots of g, hence it fixes the coefficients, hence

 $g \in L^G[x] \stackrel{?}{=} K[X]$. If, $\sigma = id$ we get $g(\alpha) = 0$. This is because one of the terms in the definition of g is equal to zero, so the whole product is equal to zero, so $g(\alpha) = 0$. So $g \in K[X]$ implies that minpol_K $(\alpha)|g$ so f splits into linear factors in L hence L/K is Galois.

L/K finite is galois \Leftrightarrow normal+separable \Leftrightarrow $L = \mathrm{Spl}_K(f), f \in K[x]$ separable \Leftrightarrow $\#\mathrm{Aut}_K(L) = [L:K] \Leftrightarrow L^{\mathrm{Aut}_K(L)} = k.$

In this case: $Gal(L/K) = Aut_K(L)$.

Lemma 5.1 (Top II.2.2)

L/K finite field extension s.t. $\#\{M: L/M/K\} < \infty \Rightarrow L$ simple,i.e. $\exists \alpha \in L$ s.t. $L = K(\alpha)$ (Lem 5.1/Top II.2.2)

Proof:

Case 1 K finite $\stackrel{L/K}{\Rightarrow} L$ finite $\Rightarrow L^{\times}$ is cyclic (i.e. $L = \langle \alpha \rangle) \Rightarrow L = K(\alpha)$ simple.

Case 2 $L = K(\alpha_1, ..., \alpha_n)$ since L/K finite.

Prove by induction that $K(\alpha, \alpha')$ simple.

If n = 1, we see that $L = K(\alpha_1)$ so already simple.

 $\#\{K(\alpha + \lambda \alpha') | \lambda \in K\} < \infty \text{ since subfield of } L/K.$ Where K infinite. So pigeon hole principle: $\exists \lambda \neq \lambda' \in K : K(\alpha + \lambda \alpha') = K(\alpha + \lambda'\alpha') =: M$. Therefore $\alpha + \lambda \alpha', \alpha + \lambda'\alpha' \in M \Rightarrow (\lambda - \lambda')\alpha \in M$. Since $\lambda \neq \lambda'$ we see that $\lambda - \lambda' \neq 0$ so $\alpha' \in M$. So then $\alpha = (\alpha + \lambda \alpha') - \lambda \alpha' \in M$.

Therefore $K(\alpha, \alpha') \supseteq M \ni \alpha, \alpha'$ hence $K(\alpha, \alpha') = M = K(\alpha + \lambda \alpha')$. Therefore base case holds).

For the induction step, assume that $K(\alpha_1, \ldots, \alpha_{n-1}) = \hat{M}(\hat{\alpha})$. Therefore $K(\alpha_1, \ldots, \alpha_n) = \hat{M}(\hat{\alpha}, \alpha_n) = M(\alpha)$. By using that we proved it for 2 elements.

Galois correspondence

Galois correspondence 5.2 (Bianchi 6.3):

L/K finite Galois has inclusion-reversion bijection:

$$\begin{array}{ccc} & \xrightarrow{\alpha: M \mapsto \operatorname{Gal}(L/M)} \\ \{M: L/M/K\} & \stackrel{\beta: H \mapsto L^H}{\longleftarrow} & \{H \leq \operatorname{Gal}(L/K)\} \\ \alpha \text{ injective}, \beta \text{surjective} & (\operatorname{Gal Cor} 5.2/\operatorname{Bianchi} 6.3) \end{array}$$

Observation:

 $\operatorname{Gal}(L/K)$ finite, therefore finitely many subgroups H, therefore $\{H \leq \operatorname{Gal}(L/K)\}$ finite. Since α injective, we see that $\{M : L/M/K\}$ is finite.

Proof:

We only have to prove that $\forall H \leq \operatorname{Gal}(L/K)$ we have $\operatorname{Gal}(L/L^H) = H$.

By (Prop 4.2/Bianchi 5.8) $\#\text{Gal}(L/K) = [L:K] < \infty$. Since α injective, L/K only fin. many subfields because the finite group Gal(L/K) has only finitely many subfields. Therefore by (Lem 5.1/Top II.2.2), $L = K(\alpha)$ is simple.

Trick
$$f := \prod_{\alpha} (X - \sigma(\alpha)) \in L[X]$$

 $\forall \tau \in H : \tau f = f \text{ where } \tau f = \prod_{\substack{\sigma \in H \\ \sigma \in H}} (X - \tau \sigma(\alpha)) = \prod_{\substack{\tilde{\sigma} \in \tau H \\ \sigma \in H}} (X - \tilde{\sigma}(\alpha)) = f \text{ since } H \text{ is a group.}$ Therefore coeffs of f are in L^H so $f \in L^H[X]$. Therefore $\#H = \deg(f) \ge [L : L^H] \text{ since } L = \frac{1}{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}$ $\mathrm{Spl}_{L^H}(f)$. Note that $[L:L^H]=\#\mathrm{Gal}(L/L^H)$ since L/L^H is Galois. So far therefore $\#H \ge \#\operatorname{Gal}(L/L^H)$.

But $H \leq \operatorname{Gal}(L/L^H)$ because H fixes L^H by definition of L^H . SO $\#H \leq \#\operatorname{Gal}(L/L^H)$. But we had $\#\text{Gal}(L/L^H) \leq \#H$ so $\#H = \#\text{Gal}(L/L^H)$. We also have $H \leq \text{Gal}(L/L^H)$ but since cardinality of both groups are the same, we see that $H = \operatorname{Gal}(L/L^H)$.

Lemma 5.3 (Bianchi 6.4)

$$\sigma \in \operatorname{Gal}(L/K) \Rightarrow \sigma(M) := \{\sigma(\alpha) | \alpha \in M\} \subseteq L \text{ field}$$

$$\Rightarrow \operatorname{Gal}(L/\sigma(M)) = \sigma \operatorname{Gal}(L/M)\sigma^{-1} := \{\sigma\tau\sigma^{-1} | \tau \in \operatorname{Gal}(L/M)\} \text{ (Lem 5.3/Bianchi 6.4)}$$

Proof:

Let $\tau \in \operatorname{Gal}(L/K)$ then $\tau \in \operatorname{Gal}(L/\sigma(M))$ iff $\tau(\sigma(\alpha)) = \sigma(\alpha)$ for all $\sigma(\alpha) \in \sigma(M)$ so $\forall \alpha \in M$. Iff $\sigma^{-1}\tau\sigma$)(α) = α , $\forall \alpha \in M$. Iff $\sigma^{-1}\tau\sigma\in\operatorname{Gal}(L/M)$ iff $\tau\in\sigma\operatorname{Gal}(L/M)\sigma^{-1}$.

Proposition 5.4

```
L/K finite Galois with L/M/K then M/K is normal (so Galois) iff
N := \operatorname{Gal}(L/M) \unlhd \mathcal{G} := \operatorname{Gal}(L/K)
then \operatorname{Gal}(L/K)/\operatorname{Gal}(L/M) \xrightarrow{\sim} \operatorname{Gal}(M/K) s.t. \sigma N \mapsto \sigma(M) well def. group isom.
                                                                                                                 (Prop 5.4)
```

Proof:

 $N \leq \mathcal{G} \text{ normal} \stackrel{\text{def}}{\Leftrightarrow} \sigma N \sigma^{-1} = N, \forall \sigma \in \mathcal{G}. \text{ Iff,} \text{Gal}(L/\sigma(M)) = \text{Gal}(L/M), \forall \sigma \in \mathcal{G}.$ Iff $\sigma(M) = M$ by Gall. correspondence, iff $\sigma(M) \subseteq M$ since we have a homomorphism from $\sigma(M) \to M$ which is an automorphism (since finite field extension), therefore $\sigma(M) \subseteq M \Rightarrow M \subseteq \sigma(M)$, so $M = \sigma(M)$.

To show $\sigma(M) \subseteq M$, $\forall \sigma \in \mathcal{G} \text{ iff } M/K \text{ normal:}$

 \Leftarrow . Assume M/K normal. Let $\alpha \in M, \sigma \in \mathcal{G}, f := \operatorname{minpol}_K(\alpha)$, then $f(\sigma(\alpha)) \stackrel{\sigma|_{K} = \operatorname{id}_K}{=} \sigma(f(\alpha)) = \sigma(0) = 0$

Since M/K normal, f splits over M, so $\sigma(\alpha) \in M$.

 \Rightarrow Assume $\sigma(M) \subseteq M, \forall \sigma \in \mathcal{G}$. Let $\alpha \in M, g := \prod_{\sigma \in \mathcal{G}} (X - \sigma(\alpha))$. Since $\sigma(\alpha) \in M$, we see

that $g \in M[X]$. Since $\tau g = g$, $\forall \tau \in \mathcal{G}$, we see that $g \in K[X]$ therefore minpol $_K(\alpha)|g$. Since g splits over M, we see that minpol $_K(\alpha)$ splits over M. Hence M/K is normal. So we only need to check the isomorphism. Define $\phi : \operatorname{Gal}(L/K) \to \operatorname{Gal}(M/K)$ with $\sigma \mapsto \sigma|_M$. Since M/K normal, we see well-defined homomorphism, because $\sigma(M) = M$. We see that $\ker(\phi) = \{\sigma \in \operatorname{Gal}(L/K)|\sigma|_M = \operatorname{id}_M\} = \operatorname{Gal}(L/M)$. By using homomorphism theorem of groups, we see that $\operatorname{Gal}(L/K)/\ker(\phi) \to \operatorname{Gal}(M/K)$ is injective, so $\psi : \operatorname{Gal}(L/K)/\operatorname{Gal}(L/M) \to \operatorname{Gal}(M/K)$ is injective.

To prove ψ is isomorphism, it is enough to prove that $\#(\operatorname{Gal}(L/K)/\operatorname{Gal}(L/M)) = \#\operatorname{Gal}(M/K)$. Note that [L:K][L:M] = [M:K] by tower law. so ψ indeed isomorphism. By Tower law, we see surjective, so therefore $\operatorname{Gal}(L/K)/\operatorname{Gal}(L/M) \to \operatorname{Gal}(M/K)$ is indeed isomorphism.

Lemma 5.5:

$$L/K$$
 finite sep. $\Rightarrow \exists \tilde{L}/L \text{ s.t. } \tilde{L}/K$ finite Galois (Lem. 5.5)

Proof:

L/K finite then $L(\alpha_1, \ldots, \alpha_n 9)$. $fi = \text{minpol}_K(\alpha_i)$ separable. WLOG, pairwise coprime. (otherwise delete multiple ones, since either equal or coprime (Note irreduciblity since minimal polynomial).). $\tau = \text{Spl}_K(\prod f_i) \supseteq L$ separable, normal and finite.

Theorem 5.6 (Bianchi 6.5):

$$L/K$$
 fin. separable $\Rightarrow \exists \alpha \in L \text{ s.t. } L = K(\alpha) \text{ so simple}$ (Thm 5.6/Bianchi 6.5)

Proof:

By (Gal Cor 5.2/Bianchi 6.3) we see that it is sufficient to show that L/K has only finitely many subfields. By (Lem. 5.5) $\tilde{L}/L/K$ finite and Galois, therefore \tilde{L}/L has finitely many subfields, so L/K has only finitely many subfields.

Example:

Char(K) \neq 2 therefore L/K quadratic has the form $L = K(\sqrt{a})$ with $a \in K \setminus K^{\square} = K \setminus \{b^2 | b \in K\}$. Note that $L = \operatorname{Spl}_K(X^2 - a)$ normal and separable, since if $f = X^2 - a$, then $(f, f') = (X^2 - a, 2X) = 1$ for $X \neq 0$. Therefore $\#\operatorname{Gal}(K(\sqrt{a})/K) = [K(\sqrt{a} : K] = 2$. Denote the zeros of a polynomial f over L by $V_L(f)$. Therefore we see that $\sigma(V_L(X^2 - a)) = V_L(X^2 - a) = \{\pm \sqrt{a}\}$.

Lemma 6.1

Missing

Example 6.2 (6.6 Bainchi)

 $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Claim:Gal $(L/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$.

Consider $L_1 := \mathbb{Q}(\sqrt{2}), L_2 := \mathbb{Q}(\sqrt{3}).$

Claim: $L_1 \neq L_2$. Otherwise $\operatorname{Gal}(L_1/\mathbb{Q}) = \operatorname{Gal}(L_2/\mathbb{Q}) = \{\operatorname{id}_{L_2}, \sigma\}$. So then $\sigma : \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto -\sqrt{3}$. Which would imply that $\sigma(\sqrt{2}\sqrt{3}) = \sqrt{2}\sqrt{3}$. So then $\sqrt{6} \in \mathbb{Q}$ which is a contradiction, so $L_1 \neq L_2$.

WE see that we have $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}(\sqrt{2})/\mathbb{Q}$. If $\mathbb{Q}(\sqrt{2},\sqrt{3}) := L = L_1 \cdot L_2$ then $[L:\mathbb{Q}] =$ $2 \cdot 2 = 4$. Therefore $\operatorname{Gal}(L/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z}$ or $\operatorname{Gal}(L/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$. Note that $\mathbb{Z}/4\mathbb{Z}$ has exactly 1 subgroup, while $\operatorname{Gal}(L/\mathbb{Q})$ has more than 1 so contradiction. Therefore $\operatorname{Gal}(L/\mathbb{Q}) \cong$

 $(\mathbb{Z}/2\mathbb{Z})^2$. Note that $(\mathbb{Z}/2\mathbb{Z})^2$ has 3 proper subgroups: $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

What is τ , σ If $L_3 = L^{\langle \sigma \tau \rangle}$ then $(\sigma \tau)(\sqrt{6}) = \sigma(\sqrt{3}(-\sqrt{3})) = \sqrt{6}$ so then $\sqrt{6} \in L_3$ so therefore $[L_3:\mathbb{Q}]=2$.

Example 6.3

 $L := \operatorname{Spl}_{\mathbb{Q}}(X^3 - 2)$. We see that $2 = [\mathbb{Q}(\zeta_3) : \mathbb{Q}]$ and $3 = [\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}]$. Both divide $[L:\mathbb{Q}]$. Note that $Gal(L/\mathbb{Q}) \hookrightarrow S_3$ by Lemma 6.1, therefore $\#Gal(L/\mathbb{Q})|3! = 6$ Proper subgroups of S_3 are $\langle (1,2,3) \rangle = \{1, (1,2,3), (1,3,2)\}$ and $\langle (12) \rangle, \langle (13) \rangle, \langle (23) \rangle$. Those subgroups are not normal. Therefore $(\mathbb{Q}(\sqrt[3]{2}))/\mathbb{Q}$, $(\mathbb{Q}(\sqrt[3]{2})\zeta_3^2)/\mathbb{Q}$, $(\mathbb{Q}(\sqrt[3]{2})\zeta_3^2)/\mathbb{Q}$ are not normal.

Cyclotomic fields

Proposition 6.4/Bianchi 7.3

$$\operatorname{Char}(K) \not\mid n \Rightarrow X^n - 1 \in K[X] \text{ separable}$$
 (Prop 6.4/Bianchi 7.3)

Proof: $(X^n-1)'=nX^{n-1}\neq 0$, where $(X^n-1)\neq 0$ and $nX^{n-1}\neq 0$. Therefore $(X^n-1)\neq 0$ $1, nX^{n-1}$) = 1 so $X^n - 1$ separable.

Assume char(K) $\not\mid n$.

Definition 6.5

L field, $\mu_n(L) := \{\zeta_n L^{\times} | \zeta^n = 1\}$ group of n-th roots of unity in L.

proposition 6.6/Top III.5.4

(Prop 6.5/AS Top III.5.4) $\mu_n(L)$ is finite cyclic

Example:

$$L = \mathbb{C} \text{ then } \mu_n(\mathbb{C}) = \left\{ e^{\frac{2\pi i k}{n}} | 0 \le k < n \right\}.$$

Definition 6.6

 $\zeta_n \in \mu_n(L)$ PRIMITIVE iff $\operatorname{ord}(\zeta_n) = n$ iff $\langle \zeta_n \rangle = \mu_n(L)$.

 $K(\mu_n) := \operatorname{Spl}_K(X^n - 1)$. Note that $K(\mu_n) = K(\zeta_n)$ iff ζ_n is primitive.

$$\zeta_n \in \mathbb{F}_q \iff \operatorname{ord}(\zeta_n)|(q-1) = \#\mathbb{F}_q^{\times}$$

Property:

 $(\zeta_n \text{ primitive then } \zeta_n^a \text{ primitive}) \text{ iff } (a, n) = 1.$

$$\mathbb{Q}(\zeta_3) = \mathbb{Q}(\sqrt{-3})$$
 since $\zeta_3^3 - 1 = 0$ but $\zeta_3 - 1 \neq 0$, therefore root of $\frac{x^3 - 1}{x - 1} = x^2 + x + 1$. Roots are $\frac{-1 \pm \sqrt{1^2 - 4 \cdot 1}}{2} = \frac{-1 \pm \sqrt{-3}}{2}$.

Lemma 6.7/Bianchi 7.8

 ζ_n primitive n-th root of unity $L := K(\zeta_n), G := \operatorname{Gal}(L/K)$

$$\Rightarrow \begin{cases} (1) & \sigma \in G \to \sigma(\zeta_n) = \zeta_n^a \text{ with } (a, n) = 1\\ (2) & \forall \zeta \in \mu_n(L), \sigma(\zeta) = \zeta^a \end{cases}$$
 (Lemma 6.7/Bianchi 7.8)

Proof: $\zeta \in G$ maps roots of $x^n - 1$ to roots, so $\sigma(\zeta_n) = \zeta_n^a$ for some $a \in \mathbb{Z}$ since $\langle \zeta_n \rangle = \zeta_n^a$ $\mu_n(L)$.

 $\sigma \in \operatorname{Aut}_K(L)$ therefore $\sigma|_{\mu_n(L)} \in \operatorname{Aut}(\mu_n(L))$ therefore σ maps generators of $\mu_n(L)$ to generators of $\mu_n(L)$. Note that therefore (a, n) = 1.

Take $\zeta \in \mu_n(L)$ therefore $\zeta = \zeta_n^b$ with $b \in \mathbb{Z}$ so then $\sigma(\zeta) = \sigma(\zeta_n^b) = \sigma(\zeta_n^b) = (\zeta_n^a)^b = \zeta_n^{ab} = \zeta_n^{ab}$ $(\zeta_n^b)^a = \zeta^a$

THE MOD-N CYCLIOTOMIC CHARACTER OF K

$$\chi_{K,n}: \operatorname{Gal}(K(\zeta_n)/K) \to (\mathbb{Z}/n\mathbb{Z})^{\times} \text{ s.t. } \sigma \mapsto \chi_{K,n}(\sigma) \coloneqq a_0 \cdot \sigma(\zeta_n) = \zeta_n^{a_0}$$

N-TH CYCLOTOMIC POLYNOMIAL:

$$\Phi_n := \prod_{a \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (X - \zeta_n^a) \in K[X].$$

Proposition 6.8/Bianchi 7.9

- $\begin{cases} 1 \end{pmatrix} \chi_{K,n}$ injective group homo. independent of choice of primitive nth root $\zeta_n \end{cases}$ $\begin{cases} 2 \end{pmatrix} \Phi_n$ is irreducible $\Leftrightarrow \chi_{K,n}$ surjective

(Prop 6.8/Bianchi 7.9)

Proof:

1) (Lemma 6.7/Bianchi 7.8) implies $\chi_{K,n}$ well defined and independent of ζ_n . $\chi_{K,n}$ homomorphism with $\sigma, \tau \in \text{Gal}(K(\zeta_n), K)$ s.t. $(\sigma \tau)(\zeta_n) = \zeta_n^{\chi_{K,n}(\sigma \tau)}$

Note that $(\sigma\tau)(\zeta_n) = \sigma(\zeta_n^{\chi_{K,n}(\tau)}) = \sigma(\zeta_n)^{\chi_{K,n}(\tau)} = (\zeta_n^{\chi_{K,n}(\sigma)})^{\chi_{K,n}(\tau)} = \zeta_n^{\chi_{K,n}(\sigma)} \cdot \chi_{K,n}(\tau)$. So in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ we see that $\zeta_n^{\chi_{K,n}(\sigma\tau)} = \zeta_n^{\chi_{K,n}(\sigma)\chi_{K,n}(\tau)}$.

 $\chi_{K,n}$ injective, so $\zeta_{K,n}(\sigma)$ 1 implies $\zeta_n^{\chi_{K,n}(\sigma)} = \sigma(\zeta_n)$. Therefore σ fixes ζ_n . Now use that $\langle \zeta_n \rangle = \mu_n(L)$ so σ fixes L hence $\sigma = \mathrm{id}_L$.

2) $\operatorname{minpol}_K(\zeta_n)|\Phi_n \operatorname{because} \Phi_n(\zeta_n) = 0$. Therefore $\#(\mathbb{Z}/n\mathbb{Z})^{\times} = \operatorname{deg}(\Phi_n) \ge \operatorname{deg}(\operatorname{minpol}_K(\zeta_n)) = [K(\zeta_n) : K] = \#\operatorname{Gal}(K(\zeta_n)/K)$.

Therefore equality iff Φ_n irreducible, so $\#\text{Gal}(K(\zeta_n)/K) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$. Since $\chi_{K,n}$ is injective, this implies surjectiveness.

Theorem 6.9/Bianchi 7.12

$$\Phi_n \in \mathbb{Z}[X]$$
 monic and irreducible (thm 6.9/Bianchi 7.12)

Proof:

 $\Phi_n|X^n-1\in\mathbb{Z}[X]$, by Gauss lemma, we see that Φ_n monic in $\mathbb{Z}[X]$.

 $f := \min_{\mathbb{Q}}(\zeta_n)$. Since ζ_n primitive, n th root of unity, we see that $X^n - 1 = f \cdot h$ where $h \in \mathbb{Z}[X]$ monic.

If for $p \not\mid n$ prime, we see that $f(\zeta_n^p) \neq 9$. Note that $0 = (\zeta_n^p)^n - 1 = f(\zeta_n^p) \cdot h(\zeta_n^p)$. So ζ_n is a root of $h(x^p)$. Therefore $f|h(x^p)$ so $h(x^p) = f \cdot g$.

 $f,g \in \mathbb{Z}[x]$ monic by gauss. Can reduce coefficients mod p to get $\overline{h(x^p)} = \overline{fg} = \overline{fg}$. So $(\overline{h})^p = \overline{h(x^p)}$, by Frobini. Therefore $(\overline{h},\overline{f}) \neq 1$. So $\overline{X^n-1}$ has multiple roots so $(\overline{X^n-1}',X^n-1) \neq 1$. But we see that this is equal to (nX^{n-1},X^n-1) which is nonzero, since $p \nmid n$ so therefore $(nX^{n-1},X^n-1) = 1$. So contradiction.

 $\forall p \mid n, f(\zeta_n^p) = 0$ any root of Φ_n is ζ_n^a . Since (a, n) = 1. Write $a = \prod_{i=1}^k p_i^{k_i}$. By repeating $f(\zeta_n^p) = 0$, we get for those p_i that $f(\zeta_n^a) = 0$. Note:

 $\operatorname{Frob}_p:(\mathbb{Z}/p\mathbb{Z})[X]\to(\mathbb{Z}/p\mathbb{Z})[X]$ is a ring hom. So Frob_p acts trivially on the coefficients in $\mathbb{Z}/p\mathbb{Z}$

If $char(K) \not\mid n$, then

$$\chi_{K,n}: \operatorname{Gal}(K(\zeta_n)/K) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times} \text{ s.t. } \sigma \mapsto (a_{\sigma}: \sigma(\zeta_n) = \zeta_n^{a_{\sigma}})$$

Is abelian extension.

 χ surjective iff $\Phi_n = \prod_{a \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (X - \xi_n^a)$ is irreducible in K[X]. Holds if $K = \mathbb{Q}$ so $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)$.

Kronecker-Weber Theorem:

 K/\mathbb{Q} abelian $\Rightarrow \exists n \geq 1 : \mathbb{Q}(\zeta_n) \supseteq K \supseteq \mathbb{Q}.$ (arithmetic statement)

Extensions of \mathbb{F}_q

Theorem 7.1/AS IX

$$\forall n \geq 1, \exists ! \text{ extension } \mathbb{F}_{q^n}/\mathbb{F}_q \text{ of degree } n \text{ up to isomorphisms}, \mathbb{F}_{q^n} = \operatorname{Spl}_{\mathbb{F}_q}(X^{q^n} - X)$$
(thm 7.1.1./AS IX.1.1)

And

$$\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \cong \langle \operatorname{Frob}_q \rangle \cong \mathbb{Z}/n\mathbb{Z} \text{ with } \operatorname{Frob}_q : x \mapsto x^q \text{ is cyclic} \quad (\text{thm } 7.1.2/\text{AS IX}.1.1)$$

Proof:

- 1) [AS IX.1.1]
- 2) Frob_q \in Gal($\mathbb{F}_{q^n}/\mathbb{F}_q$) because $x^{q^n} = x$ for all $x \in \mathbb{F}_{q^n}$ with ord(Frob)|n. $1 \le k < n \Rightarrow \operatorname{Frob}_q^k$ s.t. $x \mapsto x^{q^k}$. If frob_q^k = $\operatorname{id}_{\mathbb{F}^{q^n}}$ so $x^{q^k} - x = 0$ for all $q \in \mathbb{F}_{q^n}$ and we see we have < for degrees, there we use k < n.

Cyclic extensions

Lemma 7.2 (lin. independence of characters)

L field, G group, $\sigma_i : G \to L$ pairwise dist. homo.

$$\Rightarrow \sigma_i \text{ lin. independent } \left(\text{i.e. } \sum_{i=1}^n \lambda_i \sigma_i = 0 \Rightarrow L \ni \lambda_i = 0 \right)$$
 (Lemma 7.2)

Ass. minimal relation, i.e., $\lambda_i \neq 0$, $\forall i$. Then since σ_i pairwise distinct, exists $g \in G$: $\sigma_1(g) \neq \sigma_2(g)$. Then $\forall h \in G$ we get

$$\sum_{i} \sigma_{i}(gh) = \sum_{i} \lambda_{i} \sigma_{i}(g) \sigma_{i}(h) = 0$$

$$\sigma_{1}(g) \sum_{i=1}^{n} \lambda_{i} \sigma_{i} - \sum_{i=1}^{n} \lambda_{i} \sigma_{i}(g) \sigma_{i}(h) = 0$$

$$\sum_{i} \lambda_{i} (\sigma_{1}(g) - \sigma_{i}(g)) \sigma_{i}(h) = 0, \forall h \in G$$

Note that $\sigma_1(g) - \sigma_i(g) = 0$ if i = 1 and $\sigma_1(g) - \sigma_i(g) \neq 0$ if $i \neq 0$. This means that $\sum_{i=1}^{n} \lambda_i \sigma_i$ is not minimal, which is a contradiction. So there is not a minimal relation

Theorem 7.3/ (Bianchi 7.18)(classification of cyclic extensions)

$$\operatorname{char}(K) \not\mid n, \zeta_n \in K^{\times}$$

- 1) $c \in K^{\times}/(K^{\times})^n \Rightarrow K(\sqrt[n]{c})/K$ is cyclic of order n
- 2) $\operatorname{Gal}(L/K) \cong \mathbb{Z}/n\mathbb{Z} \Rightarrow \exists c \in K^{\times} \text{ s.t. } L = K(\sqrt[n]{c})$ (Thm 7.3,Bianchi 7.18)

Proof:

- 1) $x^n c = \prod_{i=1}^n (X \zeta_n^{i-1} \sqrt[n]{c}) \in K(\sqrt[n]{c})$. Splits over $K(\sqrt[n]{c})$ since $\zeta_n \in K$. Hence $K(\sqrt[n]{c})/K = \operatorname{Spl}_K(X^n - c)$ is normal. Since $\zeta_n^{i-1} \sqrt[n]{c}$ are not roots for $(X^n - c)'$ we see that the roots $\zeta_n^{i-1} \sqrt[n]{c}$ are distinct (for $i = 1, \ldots, n$). Therefore we see that $K(\sqrt[n]{c})/K$ is separable, so Galois. $\sigma \in G := \operatorname{Gal}(K(\sqrt[n]{c})/K)$, we see that sigma maps roots to roots. So $\sigma(\sqrt[n]{c}) = \zeta_n^{a_\sigma} \sqrt[n]{c} = \kappa(\sigma) \sqrt[n]{c}$, so we see that we get $\kappa : G \to \mu_n(K) \cong (\mathbb{Z}/n\mathbb{Z})/\sigma(\sqrt[n]{c})$. First prove κ is a homomorphism.
 - $(\sigma\tau)(\sqrt[n]{c}) = \sigma(\tau(\sqrt[n]{\sigma})) = \sigma(\zeta_n^{a_\tau}\sqrt[n]{c}) = \zeta_n^{a_\Gamma}\sigma(\sqrt[n]{c}) = \zeta_n^{a_\tau}\zeta_n^{a_\sigma}\sqrt[n]{c} = \zeta_n^{a_\sigma+a_\tau}(\sqrt[n]{c})$ κ injective, then $\kappa(\sigma) = 1$, so σ fixes $\sqrt[n]{c}$ generates $\kappa(\sqrt[n]{c})$ so $\sigma = \mathrm{id}$ κ is surjective if $\kappa^d(\sigma) = 1$, $\forall \sigma \in G$, then $(\zeta_n^{a_\sigma})^d \sqrt[n]{c}^d = \sigma(\sqrt[n]{c})^d = \sqrt[n]{c}^d$. Since $\mathrm{ord}(\sqrt[n]{c}) = n$ we get n|d.
- 2) $\operatorname{Gal}(L/K) \cong \mathbb{Z}/n\mathbb{Z} \cong \langle \sigma \rangle = \{1, \sigma, \dots, \sigma^{n-1}\} \overset{(\operatorname{Lemma } 7.2)}{\Rightarrow} \exists \alpha : \sum_{i=0}^{n-1} \sigma_n^{-i} \cdot \sigma^i(\alpha) \neq 0 \text{ plays}$ the role of $\sqrt[n]{c}$. $\sigma(b) = \sum_{i=0}^{n-1} \zeta - n^{-i}\sigma^{i+1}(\alpha) \overset{\operatorname{ind. shift}}{=} \zeta_n \sum_{i=0}^{n-1} \zeta^{-(i+1)}\sigma^{i+1}(\alpha) = \zeta_n \cdot b.$ Therefore $\sigma(b^n) = \sigma(b)^n = (\zeta_n b)^n = b^n$. Here $b := \sum_{i=0}^{n-1} \zeta^{-(i+1)}\sigma^{i+1}(\alpha)$.

So $\sigma(b) = \zeta_n b \neq b$ therefore $\sigma^i(b) = b$ iff $n \mid \text{so Gal}(L/K(b)) = \{\text{id}\}$ so L = K(b)/K cyclic of order n.

Symmetric polynomials

K field, $n \ge 1$, $K(X_1, ..., X_n)$ function field in n variables, which is $\operatorname{Frac}(K[X_1, ..., X_n])$. $K(\underline{x}) \ni f_n(z) = (z - x_1)(z - x_2) ... (z - x_n)$ with, $\operatorname{deg}(f_n) = n$. Here $(\underline{x}) = (x_1, ..., x_n)$. And $f_n(z) = z^n - \sigma_1 z^{n-1} + \sigma_2 z^{n-2} \pm ... + (-1)^n \sigma_n$.

 $\sigma_i(x_1,\ldots,x_n)$ are *i* th elementary SYMMETRIC POLYNOMIALS in *n* variables. Are invariant under permuting x_i i.e. $x_i \mapsto x_{\tau(i)}$ where $\tau \in S_n$.

 $\sigma_1 = x_1 + x_2 + \ldots + x_n, \sigma_2 = x_1 x_2 + x_1 x_3 + \ldots + x_{n-1} x_n \text{ and } \sigma_n = x_1 \cdot x_n \text{ where } \sigma_i \text{ has } \binom{n}{i} \text{ summands } M := K(\sigma_1, \ldots, \sigma_n) \leq K(\underline{x})^{S_n} \subseteq K(\underline{x}).$

We show now that we have $K(x)^{S_n} = K(x)$

Note that $K(\underline{x}) = \operatorname{Spl}_M(f_n)$ therefore we get $[K(\underline{x}) : M] \leq \deg(f_n)! = n!$ we see that $\operatorname{Gal}(K(\underline{x})/M) \to S_n$.

We want to show also surjective.

 $\forall \tau \in S_n, (x_i \mapsto x_{\tau(i)}) \in \operatorname{Gal}(K(\underline{x}/M) \text{ because it fixes } \sigma_j. \text{ Therefore } \#\operatorname{Gal}(K(\underline{x})/M) \geq \#S_n = n!. \text{ So } \operatorname{Gal}(K(\underline{x})/M) = n!, \text{ therefore } \operatorname{Gal}(K(\underline{x})/M) \xrightarrow{\sim} S_n.$

Example:

 $n=2, f_2=(Z-x_1)(Z-x_2)=Z^2-(X_1+X_2)Z+X_1X_2=z^2-\sigma_1Z+\sigma_2.$

We see that $\zeta_2 = -1$ which is not equal to 1 if $\operatorname{Char}(K) \not | 2$.

 $[K(X_1, X_2) : K(\sigma_1, \sigma_2)] = \#S_2 = 2! = 2. \text{ Let } b := \sum \zeta_2^{-i} X_i = X_1 - X_2, \text{ so--}, b^2 = (X_1 - X_2)^2. \text{ So } \sigma : X_1 \mapsto X_2, X_2 \mapsto X - 1, \text{ then } \sigma(b^2) = (X_2 - X_1)^2 = (X_1 - X_2)^2 = b.$ Note that $b^2 = X_1^2 - 2X_1X_2 + X_2^2$. So $b \in K(X_1, X_2)^{S_2} = K(\sigma_1, \sigma_2)$. Note that $b^2 - (X_1 + X_2)^2 = b^2 - \sigma_1^2 = -4X_1X_2 = -4\sigma_2$. Therefore $b^2 = \sigma_1^2 - 4\sigma_2$.

Note that $b^2 - (X_1 + X_2)^2 = b^2 - \sigma_1^2 = -4X_1X_2 = -4\sigma_2$. Therefore $b^2 = \sigma_1^2 - 4\sigma_2$. So $K(X_1, X_2) = K(\sigma_1, \sigma_2)[\sqrt{\sigma_1^2 - 4\sigma_2}]$, note that $\sigma_1^2 - 4\sigma_2$ is the discriminant of f_2 , so $K(x_1, x_2) = K(\sigma_1, \sigma_2)[\sqrt{D(f_2)}]$.

$$b = X_1 - X_2, \sigma_1 = X_1 + X_2 \text{ so } X_1 = \frac{1}{2} (b + \sigma_1) = \frac{1}{2} \left(\sqrt{\sigma_1^2 - 4\sigma_2} + 1 \right) \text{ and }$$

$$X_2 = \frac{1}{2} (\sigma_1 - b) = \frac{1}{2} \left(\sigma_1 - \sqrt{\sigma_1^2 - 4\sigma_2} \right)$$

Missed first part, first page on brightspace not readable.

L/K finite separable field extension is SOLVABLE iff $\operatorname{Gal}(\tilde{L}/K)$ is solvable with \tilde{L}/K Galois closure of L/K.

Solvable in radicals iff $\exists L = L_n \supseteq L_{n-1} \supseteq \ldots \supseteq L_0 = K$, where $L_{i+1} = L_i(\alpha_i)$ where α_i root of $x^{n_i} - c_i \in L_i[x]$.

(So it is just a field extension by adjoining an extra root for some polynomial in the field before.

For char(K) = p?0 of $x^p - x - c_i \in L_i[x]$ if $[L_{i+1} : L_i] = p = \text{char}(K) > 0$.

Lemma (perminance properties):

If M_1/K is solvable, so is $(M_1M_2)/M_2$.

Transitivity L/M/K: L/K is solvable iff L/M and M/K is solvable. Therefore if M_1/K solvable and M_2/K solvable, then M_1M_2/K solvable.

Main theorem:

L/K finite separable, then equivalent:

- 1. L/K solvable
- 2. L/K solvable in radicals.

Proof:

Assume for simplicity char $(K) \not\mid [\tilde{L}:K]$.

 $2 \Rightarrow 1$ $L = L_n \supseteq \ldots \supseteq L_0 = K$.

 $L_{i+1} = L_i(\alpha_i)$ where α_i root of $x^{n_i} - c_i \subseteq L_i[X]$.

 \tilde{L}_i galois closure of L_i/K . By induction assume \tilde{L}_i/K is solvable.

Show \tilde{L}_{i+1}/K is solvable, by permanance it sufficies $\tilde{L}_{i+1}/\tilde{L}_i$ solvable.

$$L_{i+1} = L_i(\sqrt[n]{c_i}, \zeta_n) = \operatorname{Spl}_{\tilde{L}_i}(x^{n_i} - c_i)$$

 $\tilde{L}_i(\zeta_{n_i})$ is cyclic, therefore abelian in $(\mathbb{Z}/n_i\mathbb{Z})^{\times}$. By permanance properties for solvable groups we get $\operatorname{Gal}(\tilde{L}_{i+1}/\tilde{L}_i)$ is abelian in $(\mathbb{Z}/n\mathbb{Z})^{\times}$, therefore solvable. Also that for any subfield.

 $1 \Rightarrow 2$ $G = \operatorname{Gal}(\tilde{L}/K)$ solvable, where $G = G_n$, and $G_i \triangleright G_{i-1}$ cyclic for $i \in \{2, \ldots, n\}$. By permanence properties: transitivity of being solvable in radicles, implies that it is sufficient to prove L/K cyclic where $p \not\mid [L:K] =: n$. Therefore L/K solvable in radicals.

L/K cyclic, then $L(\mu_n)/(K(\mu_n)/K)$ is cyclic. We see that $K(\mu_n)/L$ is solvable. We see that $L(\mu_n) = L(\mu_n, \sqrt[d]{c})$ for some d|n, by lecture 7.

We see that $L(\mu_n)/K$ solvable in radicals by transitivity, but we see that $K \subseteq L \subseteq L(\mu_n)$ hence K/L is also solvable in radicals (permanence)

Corollary:

 $n \ge 4$, the general equation $f_n \in K(x_1, \dots, x_n)[z]$ is not solvable in radicals. Proof:

 $\operatorname{Gal}(f_n) \cong S_n$ is solvable iff $n \leq 4$. So f_n only solvable if $n \leq 4$.

Only for general equations, specific fields are solvable.

Galois group of polynomials

Lemma:

```
f \in K[X] irreducible, then G : Gal(f) \le S_n is transitive.
(So \forall 1 \le i, j \le n, \exists \sigma \in G \text{ s.t. } \sigma(i) = j)
```

Lemma:

```
p prime, G \leq S_p is transitive \Rightarrow \exists p-cycle in G.
If furthermore, G contains transposition (so \sigma(i) = j, \sigma(j) = i) \Rightarrow G = S_p.
```

Theorem Dedekind:

 $f \in \mathbb{Z}pX$] monic and irreducible, p prime s.t. the reduction $\overline{f} \in (\mathbb{Z}/p\mathbb{Z})[X]$ has no multiple factors, say $\overline{f} = \overline{f}_1 \cdot \overline{f}_n$ then $G_f := \operatorname{Gal}(f)$ contains permutation of type $(\operatorname{deg}(\overline{f}_1), \operatorname{deg}(\overline{f}_2), \dots, \operatorname{deg}(\overline{f}_n))$

So first permutation is of length $\deg(\overline{f}_1)$ the second permutation of length $\deg(\overline{f}_2)$ and so on.

Example:

 $X^5 - X - 1 \in \mathbb{Z}[X]$ is monic. We see that $\overline{f} \mod 5$ is irreducible. Therefore irreducible in $\mathbb{Z}[X] \Rightarrow \mathbb{Q}[X]$, $G_f := \operatorname{Gal}(\underline{f})$ contains a 5-cycle (where $5 = \operatorname{deg}(\overline{f})$). We see that $\overline{f} = \overline{f_1} \cdot \overline{f_2} \in (\mathbb{Z}/2\mathbb{Z})[X]$. Where $\overline{f} = (X^2 + X + 1)(X^4 + X^2 + 1)$ so G_f contains $\sigma = (12)(345)$. We see that $\sigma^3 = (12)^3(345)^3 = (12)$, which is a transposition. Therefore by first lemma of this section, we see that $Gf \cong S_5$.

Algebraic closure of a field

K is ALGEBRAICALLY CLOSED iff $f \in K[X] \setminus K$ (so non-constant) has a root in K iff it splits completly over K iff $\forall L/K$ algebraic (therefore L = K, so does not have proper

algebraic extensions).

Theorem:

 $\forall \mathrm{field}\, K, \exists \mathrm{ALGEBRAIC}\,\,\, \mathrm{CLOSURE}\, K^{\mathrm{alg}} \coloneqq \overline{K}/K$ that is an algebraically closed it is unique up to non-unique isomorphisms.

 $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ is absolute Galois group of \mathbb{Q} which is infinite.

Extra curriculum: Infinite Galois theory

Extra curriculum: Not in exam.

L/K Galois (not necessarily finite), then there is a profinite group $\operatorname{Gal}(L/K)$ Bijection $\{M: L/M/K\} \to \{H \leq \operatorname{Gal}(L/K)\}$ s.t. $M \mapsto \operatorname{Gal}(L/M)$ and $L^H \leftrightarrow H$. M/K finite iff $\operatorname{Gal}(L/M) \leq \operatorname{Gal}(L/K)$ is open.

Exercise:

 $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q) \cong \mathbb{Z} = \lim_n \mathbb{Z}/n\mathbb{Z}$

We see that $[\overline{K}:K] < \infty$ when

- $\overline{K} = K$, since then $[\overline{K} : K] = 1$, and when
- $K = \mathbb{R}$ so $\overline{K} = \mathbb{C} = \mathbb{R}(i)$ so $[\overline{K} : K] = 2$

Definition VI.1.1.

R unitary ring, LEFT R MODULO M abelilan group (M, +, 0) with ACTION on ring R, so

$$R \times M \to M$$
, $(a, m) \mapsto am$

s.t. $\forall a, b \in R, \forall m, n \in M \text{ it holds that:}$

RM1
$$a(m+n) = am + an$$

RM2
$$(a+b)m = am + bm$$

RM3
$$a(bm) = (ab)m$$

$$RM4 \ 1m = m$$

Right R module defined analogously but with action $M \times R \to M$ Examples:

- 1. K, field, then K modulos are same thing as K vector space.
- 2. n > 0, then R^n is an R mod. Note that $R^0 = \{0\}$ is also an R-mod.
- 3. $R \subset S$ subring, then S is an R mod If $S = R[t] = R[t_1, \dots, t_n]$ then also R- modulo.
- 4. K field, n>0 then K^n is R mod, where $R=K^{n\times n}$ and $R\times K^n\to K^n$ s.t. $(A,x)\mapsto Ax$
- 5. More generally, G = (G, +, 0) abelian group, then $\operatorname{End}_{\mathbb{Z}}(G) = \{\varphi : G \to G \text{ group hom.}\}\$, in an ring $\operatorname{via}(\varphi + \psi)(x) = \varphi(x) + \psi(x)$ and $(\varphi\psi)(x) = \varphi(\psi(x))$. G is an R- mod $\operatorname{via} R \times G \to G$ s.t. $(\varphi, x) \mapsto \varphi(x)$.

Homomorphism theorem

If $\varphi: MM \to M'$ is an R- mod homom. Then $R/\ker(\varphi) \cong \operatorname{im}(\varphi) = \varphi(m)$ also R- mod.

M, M' be R-mods. A map $\varphi: M \to M'$ is an R-mod homomorphism if φ is a group hom. and $\varphi(ax) = a\varphi(x), \forall a \in \mathbb{R}, x \in M$.

So $\operatorname{Hom}_R(M, M') = \{ \varphi : M \to M' \text{ which is R-mod-hom} \}$. Note that $\operatorname{End}_R(M) = \operatorname{Hom}_R(M, M)$.

 $\varphi \in \operatorname{Hom}_R(M, M')$ is isomorphism if φ is bijective.

Example:

- 1) M, M' abelian groups, then $\operatorname{Hom}_{\mathbb{Z}}(M, M') = \{\varphi : M \to M' \text{ group homo.}\}\$
- 2) K field, V, V' a K-vectorspace. $\varphi: V \to V'$ is K-mod hom. iff φ is a K-linear map.

Remarks:

- $\varphi \in \operatorname{Hom}_R(M, M')$ is injective iff $\ker(\varphi) = \{0\}$
- If $\varphi: M \to M', \psi: M' \to M$ " are R-mod homo. then so is $\psi \circ \varphi$.
- 3) R commutative ring, $a \in RmM$ R-mod, then $\varphi_a \in End_R(M)$ where $\varphi_a : M \to M \text{ s.t. } x \mapsto ax$.

If
$$M = R$$
, then $\operatorname{End}_R(R) = \{\varphi_a : a \in R\}$ since if, $\varphi \in \operatorname{End}_R(R)$ then $\varphi = \varphi_a$ where $a = \varphi(1)$ so $\varphi(x) = \varphi(x \cdot 1) = x \cdot \varphi(1) = xa$

Remark:

If $\varphi: R \to R$ is a R-mod hom. then φ is not necessarily a ring hom.

- 4) E.g. we see that R = K[t], then $\varphi(f(t)) = tf(t)$ is not a ring homomorphism, since $\varphi(1) = t \neq 1$, and it is a R-mod hom. We see that $\psi(f(t)) = f(t^2)$ which is a ring hom. but not an R-mod-hom.
- 5) $\mathbb{Z}[i] \to \mathbb{Z}^2$ s.t. $(a+bi) \mapsto (a,b)$ is a \mathbb{Z} mod is. Similarly $\mathbb{Z}[\sqrt{2}] \cong \mathbb{Z}^2$ as \mathbb{Z} mod isom. But $\mathbb{Z}[i] \not\cong \mathbb{Z}[\sqrt{2}]$ as rings, since $(\mathbb{Z}[i])^{\times} = \{\pm 1, \pm i\}$ and $\mathbb{Z}[\sqrt{2}]^{\times} = \{\pm (1+\sqrt{2})^n : n \in \mathbb{Z}\}$ so we see that the unit groups are of different size, so they can not be isomorphic (as rings).

Submodules

Let M be an R- mod. Then a R-submodulo of M is a subgroup N of M s.t. if, $x \in N$ and $a \in R$ then $ax \in N$.

Example

- 1) $\varphi: M \to M'$ is a R-mod-hom., then $\ker(\varphi) \subset M$ is a submod, $\operatorname{im}(\varphi) \subset M'$ is a submod. We see $\forall S \subset M'$, that $\varphi^{-1}(S)$ is submod of M.
- 2) VMK vector spaces, then $N \subset V$ is a K-submod iff V is a lin. subspace.
- 3) $M_1, M_2 \subset M$ submod $\Rightarrow M_1 \cap M_2$ is a submod. More generally if I is a set and $M_i \subset M$ is a submod for all $i \in I$ then $\bigcap_{i \in I} M_i$ is a submod of M.
- 4) An left R- submod of R is the same thing as an ideal of R.
- 5) M-R- mod, $I \subset R$ ideal, if $S \subset M$ then $IS = \{\sum_{j=1}^{n} a_{i}jx_{j} : a_{j} \in I; x_{j} \in S, \forall j, n \geq 0\}$ is an R- submod. I ideal, $\forall a \in I, \forall a_{j} \in I, aa_{j} \in I$.

Quotient modules

Lemma/definition M is $R \mod$, $N \subseteq M$ is submod then

- 1. The factor group M/N is an R- mod via $R \times M/N \to M/N$ s.t. $(a, x+N) \mapsto ax+N$
- 2. $\pi: M \to MN$ s.t. $x \mapsto x + N$ is a surjective R- mod hom.

noet that if $x, x' \in N$ then x + N = x' + N so $ax' + N = ax + a(x' - x) + N \subseteq ax + N$ similarly $ax + N \subseteq ax' + N$. Therefore we see that the function in 1) is well-defined. The proof now follows using the modulo axioms of both M and N. We know that it is already a group.

For the second one, we see that it is indeed already a surjective homomorphism from group theory so we only have to proof that it is a n R-mod-hom.

Let R be a unitary ring.

Theorem 10.1 (Top VII.1.4):

$$\varphi: M \to M' \operatorname{R-mod-hom} \exists !R - \operatorname{mod-hom} \tilde{\varphi}: M/\ker(\varphi) \to M' \operatorname{s.t.} \varphi = \tilde{\varphi} \circ \pi$$
i.e. $\tilde{\varphi}: M/\ker(\varphi) \to M' \operatorname{s.t.} x + \ker(\varphi) \mapsto \varphi(x)$
is well-defined R-mod-hom and if φ surjective $M/\ker(\varphi) \cong M'$
(Thm 10.1/Top VII.1.4)

Here π is canonical surjection

Theorem 10.2:

$$M \operatorname{R-mod}, N, P \subset M \operatorname{R-submods}, \operatorname{then}(N+P)/P \cong N/(N \cap P)$$
 (Thm 10.2)

Proof:

Need to show that $N \cap P$ is a submod of N, and P is a submod of N + P, then have to find explicit isomorphism.

Theorem 10.3:

$$P \subset N \subset M$$
 R-submods
 $\Rightarrow N/P \subset M/P$ submod
 $\Rightarrow (M/P)/(N/P) \cong M/N$ (Thm 10.3)

Example:

$$V = \mathbb{R}^2, U = \mathbb{R} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, V_U = \{v + U : v \in V\} \text{ therefore } \begin{pmatrix} x \\ y \end{pmatrix} + U = \begin{pmatrix} y \\ y' \end{pmatrix} \text{ iff } y = y'.$$
 So $V/U \to \mathbb{R} \text{ s.t. } \begin{pmatrix} x \\ y \end{pmatrix} + U \mapsto y \text{ is an } R \text{ mod isom. induced by } V \to \mathbb{R} \text{ s.t. } \begin{pmatrix} x \\ y \end{pmatrix} \mapsto y.$

Lemma 10.4:

$$V$$
 K-vector space, $U \subset V$ lin. subspace then $\dim_K(V) = n \Rightarrow V \cong K^n \text{ and } V \not\cong K^m, \forall m \neq n$ (Lem. 10.4)

Proof:

Fix basis $B = (b_1, ..., b_n)$ of V then $\varphi : V \to K^n$ s.t. $\sum \lambda_i b_i \mapsto (\lambda_i)$. Is a K vector space. But #B is uniquely determined by V.

Lemma 10.5

$$\dim_K(V) = n, \dim_K(U) = m, (b_1, \dots, b_m)$$
 basis of $U, (b_1, \dots, b_m, b_{m+1}, \dots, b_n)$ basis of $V, W = \langle b_{m+1}, \dots, b_m \rangle$ $\pi|_W : V \to V/U$ s.t. $x \mapsto x + U$ is isomorphism (Lem. 10.5)

Proof:

1) Hom. clear.

2) surjective: Let $v + U \in V/U$ so then $v = \sum_{i=1}^{n} \lambda_i b_i$. Let $u = \sum_{i=1}^{m} \lambda_i b_i \in U, w = \sum_{i=m+1}^{n} \lambda_i b_i \in W$ So then v = u + w so $\pi|_{W}(v) = (v - u) + U = v + U$.

3) $\pi|_W$ is injective follows from $U \cap V = \{0\}$ since, $w + U = w' + U \Rightarrow w - w' \in U \cap W$.

Proposition 10.6

$$\dim_K(V) = n, \dim_K(U) = m \Rightarrow \dim_K(V/U) = n - m$$
 (Prop 10.6)

Proof:

By taking same basis of above, then use (Lem. 10.5), which immediately shows this proposition.

Corollary

 $\forall v \in V, \exists ! u \in U, w \in W \text{ s.t. } v = u + w$

M be R-mod, $N, P \subset M$ submods, then M is (INNER) DIRECT SUM of P and N written $M = N \oplus P$ if

1.
$$M = N + P$$
 i.e., $\forall x \in P, \exists y \in N, z \in P$ s.t. $x = y + z$.

2.
$$N \cap P = \{0\}$$

This means $M = N \uplus P$ s.t. $\forall x \in M, \exists ! y \in N, z \in P$ s.t. x = y + z.

 $I \operatorname{set}, M_i \operatorname{R-mod}, \ \forall i \in I, \prod_{i \in I} M_i = \{(x_i)_{i \in I} . \operatorname{s.t} x_i \in M_i, \ \forall i \in I\}.$ This is n R- mod via componentwise addition and scaler multiplication, called the DIRECT PRODUCT of M_i . Example:

$$R^n = \prod_{i=1}^n R \text{ then } R^i = \{f : I \to R \text{ functions}\}$$

Take $\mathbb{R}^{\mathbb{Z}_{\geq 0}} = \{\text{real sequences}\}$

(OUTER) DIRECT SUM of M_i is the R- submod $\bigoplus_{i \in I} M_i = \{(x_i)_{i \in I} \in \prod_{i \in I} M_i : x_i = 0, \forall \text{ but finitely many } i \in I\} \subseteq \prod_{i \in I} M_i$

 $R \bmod M$ is free, if $\exists I$ and $R \bmod$ isomorphism s.t. $M \cong \bigoplus_{i \in I} RREALLY$ IMPORTANT Example:

- I finite then $\prod_{i \in I} M_i = \bigoplus_{i \in I} M_i$
- $R^n = \bigoplus_{i=1}^n R$ is free.
- $\bigoplus_{n \in \mathbb{Z}_{\geq 0}} \mathbb{R} = \{ \text{sequences } (a_n)_{n \geq 0} \text{ s.t. } \exists N > 0 : a_n = 0, \forall n > N \}$

- R[t] is free, since we can map $\sum a_n t^n \mapsto (a_n)$ so then we have $[t] \to \bigoplus_{n \in \mathbb{Z}_{\geq 0}} R$ which is isomorphic, hence free.
- V a K-vector space, $U \subset V$ linear subspace, then $V \cong U \oplus V/U$.
- M an R, mod, all $M_i \subset M$ submods, s.t. M is the inner direct sum of all M_i then M is isom. to the outer sum of the M_i .
- All K vector spaces are free.
- $\mathbb{Z}/2\mathbb{Z}$ is a free $\mathbb{Z}/2\mathbb{Z}$ mod. But not free as \mathbb{Z} mod. This is because M is a free \mathbb{Z} mod, then #M = 1, if $M = \{0\}$ or $\#M = \infty$
- $M = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ is not free as \mathbb{Z} mod, since 2(0,1) = (0,0) but $(0,1) \neq (0,0)$ but $\nexists x \in \mathbb{Z}^n$ of order 2.
- $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ as \mathbb{Z} mod, but also as $\mathbb{Z}/6\mathbb{Z}$ mods.

Remark:

If d|N then $\mathbb{Z}/d\mathbb{Z}$ is $\mathbb{Z}/N\mathbb{Z}$ -modulo. This is because $\mathbb{Z}/d\mathbb{Z} \cong (\mathbb{Z}/N\mathbb{Z})/d(\mathbb{Z}/n\mathbb{Z})$.

So Chinese remainder theorem: If $N = \prod p_i e^i$ where p_i prime, $e_i > 0$ then $\mathbb{Z}/n\mathbb{Z} \cong \bigoplus \mathbb{Z}/(p_i^{e_i})\mathbb{Z}$ as \mathbb{Z} - mods and as $\mathbb{Z}/n\mathbb{Z}$ -mods.

Theorem 10.6

$$R \text{ comm. } \operatorname{ring}, m, n \ge 0. \operatorname{then} \mathbb{R}^n \cong \mathbb{R}^m \Rightarrow n = m$$
 (Thm. 10.6)

Proof:

Recall $R = \mathbb{Z}$ then $\mathbb{Z}^m \cong \mathbb{Z}^n \Rightarrow (\mathbb{Z}/2\mathbb{Z})^m \cong (\mathbb{Z}/2\mathbb{Z})^m \Rightarrow m = n$

In general. Choose maximal idea $J \subset R$. Then R/J = K is a field. Suppose exists isom. $\varphi : R^m \to R^n$ then $\varphi(J^m) \subset R^n$ is a submod so there exists a K-vectorspace isomorphism $R^n/\varphi(J^m) \cong R^m/R^n \cong (R/J)^m = K$. We get $\dim_K = m$. This is because $R^n/\varphi(J^m) = \langle S \rangle$ where $S = \{e_i + \varphi(J^m) : i \in \{1, ..., n\}\}$. We see that #S = n so $n \geq m$. Similarly we get $m \geq n$ so m = n.

For M free say $M \cong \mathbb{R}^n$ we call n the RANK of M (so $\operatorname{rk}(M) = n$)

M is an $R \mod_S \subset M$ subset. Then S is LINEAR INDEP/ of $\forall (\lambda_s)_{s \in S}$ where $\lambda_s \in R$ s.t. $\forall \lambda_s \neq 0$ we have $\sum_{s \in S} \lambda_s s = 0$ then all $\lambda_s = 0$.

S is GENERATING SET of M if $M = \langle S \rangle = \{ \sum_{s \in S} \lambda_s s \text{ finite sums} \}.$

S is an R-BASIS if S is lin. indep, and a generating set.

M is FINITELY GENERATED if $M = \langle S \rangle$ for some $S \subset M$ finite. M is CYCLIC if $M = \langle S \rangle$ where #S = 1.

Lemma 10.7

$$M$$
 R-mod
$$1)S \subset M \text{ basis} \Leftrightarrow \forall x \in M, \exists ! (\lambda_s)_{s \in S} : x = \sum_{s \in S} \lambda_s s$$

$$2)M \text{ has basis} \Leftrightarrow M \text{ free}$$

Proof:

Part 1: Sim. as LA

Part 2: If M is free, so $\varphi: M \cong \bigoplus_{i \in I} R \ni (e_i)_{i \in I}$ then $(\varphi^{-1}(e_i))$ is a basis.

If
$$(s_i)_{i \in I} = S \subset M$$
 basis, then $\varphi : M \to \bigoplus_{i \in I} R$ s.t. $s_i \mapsto e_i$. Still have to show isomorphism.

Example:

 $M = R = \mathbb{Z} = \langle 1 \rangle$ where $\{1\}$ is basis, but we see that $M = \langle 2, 3 \rangle$ since $1 \in \langle 2, 3 \rangle$. If $S = \{2, 3\}$ we see that $(-3) \cdot 2 + 2 \cdot 3 = 0$ so not lin. indep. so S is not a basis and no subset of S is since $2 \notin \langle 3 \rangle$, $3 \notin \langle 2 \rangle$.

Lemma 10.8:

$$R \operatorname{comm. ring} I \subseteq R \operatorname{ideal}$$

 $a)I \operatorname{cyclic} \operatorname{as} R - \operatorname{mod} \Leftrightarrow I \operatorname{principal}$
 $b) R \operatorname{domain then} I \operatorname{free} \Leftrightarrow I \operatorname{principal}$ (10.8)

Proof:

- a) follows by definition of principal ideal and cyclic.
- b) \Leftarrow if, I is principal, then I = Rx so $R \to I$ s.t. $a \mapsto ax$ is an isomorphism. So I is free. \Rightarrow suppose I is free, then if $\operatorname{rk}(I) > 1$, $\exists x_1, x_2 \in I$ lin. indep. And $I \cong R^{\operatorname{rk}(I)}$, but $x_2x_1 x_1x_2 = 0$ which is a contradiction so $\operatorname{rk}(I) = 1$, hence I = Rx is principal.

 $R \operatorname{ring}_{i} M_{i} \operatorname{an} R - \operatorname{mod} \operatorname{for all} i \in I \operatorname{then}$

$$\bigoplus_{i \in I} M_i = \{(x_i)_{i \in I} : x_i \in M_i, \forall i \in I, x_i = 0, \text{ for all but fin. many } i\}$$

R– $\operatorname{mod} M$ is Free if $\exists I$ s.t. $M \cong \bigoplus_{i \in I} R$

M is free iff M has a basis (a lin independent generating set)

R domain, $I \subset R$ ideal, then I free iff I principal.

Theorem 11.1:

R principal ideal domain (PID), let M free R-mod then any R – submod of M is free (Thm 11.1)

Proof:

See conrad, all most the same for $R = \mathbb{Z}$ (group theory)

Example:

- $R = \mathbb{Z}[\sqrt{-5}]$ and $M = \langle 2, -1 + \sqrt{-5} \rangle \subset R$ which is non-principal ideal, so not free as R mod. But $M \oplus M \cong R^2$ is free.
- $R = \{f \in C^{\infty}(\mathbb{R}) : f(x+2\pi) = f(x)\}$ is a ring. $M = \{m \in C^{\infty}(\mathbb{R}) : m(x+2\pi) = -m(x)\}$ is a module over R via $R \times M \to M$, $(f,m) \mapsto fm$ where (fm)(x) = f(x)m(x). Claim:
 - 1. $M \oplus M \cong R^2$. Let $c_0(x) = \cos\left(\frac{x}{2}\right), s_0(x) = \sin\left(\frac{x}{2}\right)$. Then $s_0, c_0 \in M$. Let $\psi : R^2 \to M \oplus M$, s.t. $(f,g) \mapsto A\left(\frac{f}{g}\right)$, where $A = \begin{pmatrix} c_0 & s_0 \\ -s_0 & c_0 \end{pmatrix}$ We see that ψ is an R- mod hom.

 $A^{-1} = \begin{pmatrix} c_0 & -s_0 \\ s_0 & c_0 \end{pmatrix} \text{ and } m, n \in M \Rightarrow mn \in R.$

 $\psi^{-1}: M \oplus M \to R^2$ s.t. $(m,n) \mapsto A^{-1} \binom{m}{n}$ so ψ has an inverse, so ψ is an isomorphism.

2. M is not free. Exercise VI.7.3. This says $M \cong I \subset R$ ideal, and

 $I = \ker(\operatorname{ev}_0) = \{f \in R : f(0) = 0\}$, It suffices to show that $\nexists R$ - mod isomorphism $\varphi : R \to M$. Suppose therefore there exists such a φ . Let $g := \varphi(1) \in M$. Let $a \in [0, 2\pi]$ s.t. g(a) = 0. Since φ surj, $\exists f \in R$ s.t. $\varphi(f) = c_a$ where $c_a(x) := \cos\left(\frac{x-a}{2}\right)$. We see hterfore that $\varphi(f) = f\varphi(1) = fg$. So then $0 = f(a)g(a) = c_a(a) = \cos(0) = 1$. But we see that $0 \neq 1$ so φ is not surjective, so φ is not a R-mod isomorphism. Therefore there does not exists an R-mod isomorphism, hence we are done?

Universal property (UP) of direct sums

Theorem 11.2 (UP):

$$R \operatorname{ring}, M_i \operatorname{R-mod} \forall i \in I : \iota_i : M_i \to \bigoplus_{i \in I} M_i = N \operatorname{s.t.} x_i \mapsto (x_i, \delta_{ij})_{j \in I}$$

This is an R-mod-hom, then following properties:

a) The pair
$$(N_i, (c_i)_{i \in I})$$
 satisfies UP: $\forall (M, (\varphi_i)_{i \in I} \text{ s.t. } M \text{ R-mod}, \varphi_i : M_i \to M \text{ R-mod hom}$
 $\Rightarrow \exists ! \varphi \in \text{Hom}_R(N, M) : \varphi \circ \iota_i = \varphi_i, \forall i \in I$

b) Let
$$(D, (j_i)_{i \in I})$$
, D R-mod, $j_i : M_i \to D$ be R-mod hom. & satisfy a),
i.e. $\forall (M, (\varphi_i)_{i \in I}), \exists ! \psi : \operatorname{Hom}_R(D, M)$ s.t. $\psi \circ j_i = \varphi_i, \forall i \in I \Rightarrow D \cong N$
(Thm 11.2/UP)

Proof:

Part a Note that
$$x = (x_i)_{i \in I} \in N$$
 we have $x = \sum_{i \in I} \iota_i(x_i) \Leftarrow (*)$.
Consider $(M, (\varphi_i)_{i \in I})$ and supp $\exists \varphi \in \operatorname{Hom}_R(N, M)$ s.t. $\varphi \circ \iota_i = \varphi_i, \forall i \in I$. Then for $x = (x_i)_{i \in I} \in N$, we have $\varphi(x) \stackrel{*}{=} \sum_{i \in I} \varphi(\iota_i(x_i)) = \sum_{i \in I} \varphi_i(x_i)$. so φ is already uniquely determined by $(M, (\varphi_i)_{i \in I})$
So this proofs both uniqueness, and $\varphi : N \to M$ s.t. $x = (x_i)_{i \in I} \mapsto \sum_{i \in I} \varphi_i(x_i)$ shows existence. Since φ is an R - mod hom, and $\varphi \circ \iota_i = \varphi_i$.

Part b UP for D, with M = N, $\varphi_i = \iota_i$. So $\exists ! \psi \in \operatorname{Hom}_R(D, N)$ s.t. $\iota_i = \psi \circ j_i \Leftarrow \dagger$. UP for N with M = D, $\phi_i = j_i$, so $\exists ! \phi \in \operatorname{Hom}_R(N, D)$ s.t. $j_i = \varphi \circ \iota_i$. We show that ψ , φ are both isomorphisms, and to be more explicit, they are eachothers inverses. $\iota_i \stackrel{\dagger}{=} \psi \circ j_i = (\psi \circ \varphi) \circ \iota_i$. So we show that $\psi \circ \varphi = \operatorname{id}$. UP for N with M - N, and $\varphi_i = \iota_i$, then $\exists ! \tilde{\phi} \in \operatorname{Hom}_R(N, N)$ s.t. $\tilde{\varphi} \circ \iota_i = \iota_i$ for all $i \in I$. This holds for $\tilde{\varphi} = \operatorname{id}_N$, and only for this one due to uniqueness. But we saw that it also hold for $(\psi \circ \varphi)$. Therefore we see that $\tilde{\varphi} = \psi \circ \varphi = \operatorname{id}_N$. By similar reasoning, $\varphi \circ \psi = \operatorname{id}_D$. Therefore φ , ψ are isom.

Modules over PID's

R comm. ring,M-R-mod. Then: $x \in M$ Torsion iff $\exists a \in R \setminus \{0\}$ s.t. ax = 0.

For $R = \mathbb{Z}$ we see x torsion iff $\operatorname{ord}(x) < \infty$. $\operatorname{Tor}(M) := \operatorname{Tor}_R(M) = \{x \in M \text{ torsion}\}$

Example:

- 1. $V ext{ a } K$ -vector space, therefore $Tor(V) = \{0\}$
- 2. $M = \mathbb{Z}^n, R = \mathbb{Z}$, then $Tor(\mathbb{Z}^n) = \{0\}$
- 3. $R = \mathbb{Z}, M = \mathbb{Z}/6\mathbb{Z}$ then Tor(M) = M since $6x = 0, \forall x \in M$.
- 4. $R = M = \mathbb{Z}/6\mathbb{Z}$ then $Tor(M) = \{0, 2, 3, 4\}$
- 5. M fin. abel. group, then $M \cong \mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_n\mathbb{Z}$ s.t., $d_1|d_2|\ldots|d_n \Rightarrow \operatorname{Tor}_{\mathbb{Z}}M = M$. If M is finitely generated, then we see $M \cong \mathbb{Z}^r \times \mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_n\mathbb{Z}$ for $r \geq 0$. Then $\operatorname{Tor}(M) \cong \mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_n\mathbb{Z}$

 $\operatorname{Ann}(M) = \operatorname{Ann}_R(M) = \{a \in R : ax = 0, \forall x \in M\} \text{ this is called Annihilator of } M$ (Note that $\operatorname{Tor}(M) \subseteq M$, $\operatorname{Ann}(M) \subseteq R$.)

Lemma 11.3

- 1) R integral domain, then $Tor_R(M)$ is submodule of M
- 2) Ann(M) is an ideal of R

(Lem 11.3)

Proof:

Tutorial

Go back to example 5, so T finite \mathbb{Z} - mod, then $T \cong \bigoplus_{i=1}^t Z/d_i\mathbb{Z}$. But $T \cong \bigoplus_{i=1}^t A_i$ where A_i is the p_i Sylow subgroup. S.t. $\#T = \prod_{i=1}^t p_i^{e_i}$ where p_i prime and $e_i > 0$.

If $Ann(M) \neq \{0\}$ then Tor(M) = M.

Let R be PID

Theorem 12.1:

T R-mod s.t. Ann $(M) \neq \{0\}$, write $h \in \text{Ann}(M) \setminus \{0\}$ as $h = \prod_{i=1}^{t} p_i^{e_i}$ with

 $p_i \in R$ prime and non-associated, $e_i > 0$ set $T_{h,i} \coloneqq \{x \in T : p_i^{e_i} x = 0\}$

- 1) $T_{h,i}$ submod of $T, \forall i$
- 2) $T_{h,i} = \{x \in T : p_i^e x = 0 \text{ for some } e > 0\} = T(p_i)$
- 3) $T = T(p_1) \bigoplus \cdots \bigoplus T(p_t)$
- 4) Ann(M) = hR and $p \in R$ prime then $T(p) = \{0\} \Leftrightarrow p \nmid h$ (Thm 12.1)

Proof:

- 1) follows from definition
- 2) $T_{h,i} \subset T(p_i)$ is logic. Now set $q_i = \frac{h}{p_i^{e_i}} \in R$. Therefore $(q_i, p_i) = 1$. Let $x \in T(p_i)$. We know $p_i^e x = 0$ for some e > 0. Since $(q_i, p_i) = 1$ we see that $(q_i, p_i^e) = 1$, so therefore by Beizout, $1 = rp_i^e + sq_i$ for $r, s \in R$. So we get $p_i^{e_i} x = p_i^{e_i} (rp_i^e x + sq_i x) = p_i^{e_i} q_i sx$. Use that $p_i^{e_i} q_i = h$ therefore we get $p_i^{e_i} x = hsx = 0$ so we have $T(p_i) \subset T_{h,i}$ so $T(p_i) = T_{h,i}$
- 3) Write $1 = s_i q_i + \ldots + s_t q_t$. Let $x \in T$. Want to show: $\exists ! x_i \in T(p_i) \forall i$, s.t. $x = x_1 + \ldots + x_t$. Let $x_i = x s_i q_i$ then $x = x_1 + \ldots + x_t$. Since $p_i^{e_i} x_i = h x s_0 = 0$, so $x_i \in T(p_i)$. Now we have to show it is unique. Suff. to show if $y_1 + \ldots + y_t = 0$ for $y_i \in T(p_i)$ then all $y_i = 0$. As in 2) let $1 = r_1 p_i^e + s q_i$, where $p_i^e y_i = 0$, then $y_i = r p_i^e y_i + s q_i y_i = s q_i y_i$. If $y_1 + \ldots + y_t = 0$, then $y_i = s q_i y_i = -s \sum_{j \neq i}^1 q_i y_j = 0$. If $i \neq j$ then $q_i y_j = s y_j q_i q_j = 0$ because $h|q_i q_j$. So we get $y_i = 0$ for all i.
- 4) Let $\operatorname{Ann}(T) = hR$. Suppose $T(p) = \{0\}$. Assume p|h, let $h = h'p^e$ s.t. $p \nmid h$. $\forall x \in T$ we have $0 = hx = h'p^ex$, so $h'x \in T(p) = \{0\}$. So $h' \in \operatorname{Ann}(T)$, which is a contradiction as $h' \notin hR$. So $T(p) = \{0\} \Rightarrow p \nmid h$.

Suppose $p \not\mid h$ let $h = \prod_{i=1}^{t} p_i^{e_i}$. Therefore $T = T(p_1) \oplus \ldots \oplus T(p_t)$. Note $ph \in Ann(T)$. Therefore $T = T(p_1) \oplus \ldots \oplus T(p_t) \oplus T(p)$, so $T(p) = \{0\}$

Theorem 12.2:

R PID, M Fin. Gen. R – mod. Let T = Tor(M)

- 1) $M = F \bigoplus T$ where $F \cong M/T$ free and rank(F) uniq. determ. by M
- 2) $T \neq \{0\}$ then $T \cong N_1 \bigoplus \ldots \bigoplus N_s, N_i = R/d_iR$ with $d_1|d_2|\ldots|d_s$ and N_i submodules, $d_i \in R \setminus R^{\times}$ uniq. determ up to integers by multiples of R^{\times}
- 3) If $T \neq \{0\}$, then $T = T(p_1) \bigoplus \ldots \bigoplus T(p_t)$ where $p_1, \ldots, p_t \in R$ primes, s.t. $T(p_i) \neq \{0\}$, where p_i uniquely determ. by M up to mult. by R^{\times} (12.2)

Theorem 12.2 is called the structure theorem for finitely generated modules over PID Proof:

- 1) See Conrad/GT
- 2) See Conrad/GT
- 3) M finitely generated, then T finitely generated. Say $T = \langle s_1, \ldots, s_n \rangle$. Let $h_i \in R \setminus \{0\}$ s.t. $h_i s_i = 9$. Then $h = \prod h_i \in \text{Ann}(T)$ now apply (Thm 12.1)

Linear algebra over fields (normal forms of matrices)

K field, V finite dimensional K-vector sapce, Let $\varphi \in \operatorname{End}_K(V) = \{f : V \to V | \operatorname{linear}\}$ then $\operatorname{ev}_{\varphi} : K[t] \to \operatorname{End}_K(V)$ s.t. $\sum a_i t \mapsto \sum a_i \varphi^i$ is a ring hom. and a K-vector space.

Lemma 12.3:

- 1) $K[\varphi] = \operatorname{ev}_{\varphi}([K(t)])$ com. subring of $\operatorname{End}_{K}(V)$
- 2) V is $K[\varphi] \mod \operatorname{via} K[\varphi] \times V \to V$ s.t. $(\sum a_i \varphi^i, x) \mapsto \sum a_i \varphi^i(x)$
- 3) V is a K[t] mod via $K[t] \times V \to V$ s.t. $(f, x) \mapsto \operatorname{ev}_{\varphi}(f) \cdot x = (\operatorname{ev}_{\varphi}(f)(x))$
- 4) \exists ! monic $m_{\varphi} \in K[t]$ s.t. $K[\varphi] \cong K[t]/(m_{\varphi})$
- 5) $m_{\varphi}|\mathcal{K}_{\varphi}$, char pol of φ (Lem. 12.3)

Proof:

- 1),2),3) Tutorial
- 4) K[t] PID, therefore $Ker(ev_{\varphi})$ prime. Let m_{φ} unique monic gen. Then $K[t]/(m_{\varphi}) \cong K[\varphi]$
- 5) Cayley-Hamilton

Theorem 12.4

Write
$$m_{\varphi} = \prod_{i=1}^{t} h_i^{e_i}$$
, $e_i > 0$ and h_i irr., monic, not ass.

1)
$$V_i = \{v \in V | h_i^{e_i}(\varphi)(v) = 0\}$$
 is $K[\varphi] - \&K[t]$ – submond of V

2) $V_i \neq \{0\} \forall i \text{ and } V_i \text{ Generalized eigenspaces}$

$$3) V = V_1 \bigoplus \ldots \bigoplus V_t \tag{12.4}$$

Proof:

K[t] PID, we generate $\ker(\text{ev}_{\varphi}) = \text{Ann}_{K[t]}V \neq \{0\}$. Then apply (Thm 12.1) with h = 1 m_{φ} so $T_{m_{\varphi,i}} = V_i$

Remark: Since V_i is a $K[\varphi]$ mod have $\varphi(V_i) \subset V_i$. This and $V = V_1 \oplus \ldots \oplus V_t$ implies that can deal with the V_i separable

Example:

 $m_{\varphi} = \mathcal{K}_{\varphi} = \prod_{i=1}^{n} (t - \lambda_i) \text{ with } \lambda_i \text{ distinct.}$ $V_i = \{ v \in V : (t - \lambda_i)(\phi)(v) = 0 \} = \{ v \in V : (\varphi - \lambda_i \text{id}_v)(v) = 0 \} \text{ which is the eigenspace}$ of λ_i .

 $\dim V_i = 1 \Rightarrow V_i = Kx_i$ for some $x_i \in V_i$ therefore $V = Kx_1 \oplus \ldots \oplus Kx_n$ then the matrix of φ w.r.t. to the basis B denoted by $M_B(\varphi)$ satisfy $M_B(\varphi) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ where $B = (x_1, \dots, x_n).$

To gen. this, find basis for V using bases of V_i s.t. matrix of $B_i \varphi|_{v_i}$ wrt B_i is simple. By remark above, if we set $B = (B_1, \dots, B_t)$, then $M_B(\varphi) = \begin{pmatrix} M_{B_1}(\varphi|_{v_1}) \\ \ddots \\ M_{B_t}(\varphi|_{v_t}) \end{pmatrix}$ which is a block matrix.

$$V + \mathbb{R}^{3}, A = \begin{pmatrix} 1 & -4 & 0 \\ 1 & -3 & 0 \\ -1 & 2 & -1 \end{pmatrix}, \varphi(x)Ax, \text{ then } \mathcal{K}_{\varphi}(t) = (t+1)^{3}. \text{ So then } A + I_{3} = \begin{pmatrix} 2 & -4 & 0 \\ 1 & -2 & 0 \\ -1 & 2 & 0 \end{pmatrix} = N \neq 0 \text{ by } N^{2} = 0. \text{ So } M_{\varphi} = (t+1)^{2} \text{ so } V_{t} = \text{Ker}()\varphi + \text{id}_{V})^{2})$$

Theorem 12.5:

supp.
$$m_{\varphi} = (t - \lambda)^2, \lambda \in K$$

1) $\varphi = \lambda i d + \psi \text{ s.t. } \psi^2 = 0$
2) $\exists \text{basis } B \text{ of } V \text{ s.t. } M_B(\varphi) \text{ upp triang. matrix with only } \lambda \text{ 's on diagonal}$ (12.5)

Proof:

- 1) $0 = m_{\varphi}(\varphi) = (\varphi \lambda i d_V)^2$. Define $\psi = \varphi \lambda i d_V$
- 2) Look at ψ first, $W_i = \ker(\psi^i)$ therefore $W_1 \subset W_2 \subset \ldots \subset W_l = V$. Construct basis B of V, so choose basis B_1 of W_1 , extend to basis B_2 of W_2 and so on. Use $\psi(W_j) \subset W_{j-1}$ to show $M_B(\psi)$ is upper triangular with zeros on diagonal, then use 1)

Example:

$$A = \begin{pmatrix} 1 & -4 & 0 \\ 1 & -4 & 0 \\ -1 & 2 & -1 \end{pmatrix}, \text{ and } N = A + I_3, N^2 = 0. \text{ Let } \psi = N. \quad W_1 \nsubseteq W_n = V \text{ where } W_1 = ker(N) = \left(\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\right). \text{ Since } W_2 = V, \text{ can take } B = \left(\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\right), \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\right). \text{ Then } N\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = 1\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} - 1\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}. \text{ Therefore } M_B(\psi) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow M_B(\varphi) = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

Exactness

R ring

A sequence

$$\dots \to M \xrightarrow{f} N \xrightarrow{g} P \to \dots \text{ of } R - \text{ mod homomorphisms}$$
 (13.1)

- -) is exact in N if im $(f) = \ker(g)$
- -) is exact if it's exact everywhere

Remark:

(13.1) exact in $N \Rightarrow g \circ f = 0$ but not necessarily other way around.

Example:

- 1. $\{0\} \to N \xrightarrow{g} P$ s.t. $0 \mapsto 0$ is exact iff g is injective.
- 2. $M \xrightarrow{f} N \to 0$ with $x \mapsto 0$ iff f is surjective.
- 3. For all R- mods M, P $0 \to M \xrightarrow{\iota_1} M \oplus P \xrightarrow{\pi_2} P \to 0$ s.t. $\iota_1 : x \mapsto (x,0), \pi_2 : (x,y) \mapsto y$ is always exact. Since π_1 is inj, π_2 is surj. Furthermore $\ker(\pi_2) = \{(x,y) \in M \oplus P : y = 0\} = \operatorname{im}\iota_1$
- 4. For all R- mod hom. $g: N \to P$ we get $0 \to \ker(g) \xrightarrow{\iota} N \xrightarrow{g} \operatorname{Im}(g) \to 0$. Note that we can write $\operatorname{im}(g) \cong N/\ker(g)$. So $0 \to \ker(g) \xrightarrow{\iota} N \xrightarrow{\pi} N/\ker(g) \to 0$ s.t. $\pi: x \mapsto g(x) + \ker(g)$.

SHORT EXACT SEQUENCE (SES) of R- mods is an exact sequence $0 \to M \to N \to P \to 0$.

Remark:

1) is shorter then the definition of SES, but it is not an SES.

Lemma 13.2:

$$\forall \text{SES}\, 0 \to M \to N \to P \to 0\, \text{exists}$$
a comm. diagram

$$0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$$

$$\cong \downarrow f \qquad || \mathrm{id}_{N} \qquad \cong \downarrow h$$

$$0 \to \ker(g) \xrightarrow{\iota} N \xrightarrow{\pi} N/\ker(g) \to 0$$

$$h \text{ inverse of } N/\ker(g) \to \mathrm{Im}(g), x + \ker(g) \mapsto g(x) \qquad \text{(Lem 13.2)}$$

Proof:

We need to show both squares are commutative. Commutative is trivial. Note that since $\operatorname{im}(f) = \ker(g \operatorname{and} f \operatorname{injective})$ (follows from example 1), we have that $f: M \to \ker(g)$ is an isomorphism.

For the second square, $\forall x \in N$ we need that $\pi(x) = h(g(x))$. Since h inverse of $N/\ker(g) \to \operatorname{im}(g)$ we see that $h(g(x)) = x + \ker(g) = \pi(x)$ h is surjective, since $N/\ker(G) \to \operatorname{im}(g)$ is isomorphism, but we need $P \to N/\ker(g)$ to be a well-def. isomorphism, which follows from that g is surjective.

Homomorphisms

Recall: M, N are R- mods, then $\operatorname{Hom}_R(M, N) = \{f : M \to N, R \operatorname{mod-hom}\}$ **Lemma 13.3:**

M, N are R – mods

- Hom_R(M, N) subgroup of Hom_Z(M, N) with group law addition
 (Lem 13.3)
- 2 $\operatorname{End}_R(M) := \operatorname{Hom}_R(M, M)$ is subring of $\operatorname{End}_{\mathbb{Z}}(M)$ with composition

Examples:

- 1. K field then $\operatorname{Hom}_K(K^n, K^m) \cong K^{n \times M}$
- 2. $n \ge 2, f \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z})$ for $x \in \mathbb{Z}$ let $\overline{x} := x \mod n$. Therefore $f(\overline{x}) = x \cdot f(\overline{1})$. SO $0 = f(\overline{0}) = f(\overline{n}) = nf(\overline{1})$. This last multiplication is multiplication in \mathbb{Z} which has no zero divisors, so $f(\overline{x}) = 0$ for all $x \in \mathbb{Z}$ therefore $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}) = \{0\}$.
- 3. R comm ring, M R-mod. For $x \in M$ let $f_x : R \to M$ s.t. $a \mapsto ax$. Claim: $\varphi : M \to \operatorname{Hom}_R(R, M)$ s.t. $x \mapsto fx$ is an R- mod isom. Proof:
 - $f_x \in \operatorname{Hom}_R(R, M)$ which is easy.
 - $\varphi(x+y) = \varphi(x) + \varphi(y)$ which is clear.

- To show φ is an R-mod hom, still need to show $\forall b \in R, x \in M : \varphi(bx) = b\varphi(x)$. Note that $\varphi(bx) = f_{bx}$ and $b\varphi(x) = bf_x$. Let $a \in R$ then $f_{bx}(a) = abx$ and $bf_x(a) = bax$ but since R commutative, we see that abx = bax so therefore indeed $f_{bx} = bf_x$. So $\varphi(bx) = b\varphi(x)$.
- φ injective. Let $x \in M \setminus \{0\}$ then $\varphi(x)(1) = f_x(1) = x \neq 0$ therefore φ injective.
- φ surjective. Let $f \in \text{Hom}_R(R, M)$, $\forall a \in R, \varphi(f(1))(a) = f(1) \cdot a$ since f R-mod hom. wew see that this is equal to f(a). So $f = \varphi(f(1))$ so φ surjective.

Remark:

In book $\varphi^{-1} = \text{ev}_1 : \text{Hom}_R(R, M) \to M, f \mapsto f(1)$.

Remark

We haven't said that $\operatorname{Hom}_R(R, M)$ is an R-modulo.

Lemma 13.4:

$$\operatorname{Hom}_R(M, N)$$
 is an R – mod if R commutative (Lem 13.4)

Proof:

When is $\operatorname{Hom}_R(M, N)$ an R- mod? via $R \times \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M, N)$ s.t. $(a, f) \mapsto af$ where (af)(x) = af(x). To be this enough, we need $g = af : M \to N$ is an R- mod hom. Let $b \in R, x \in M$, then g(bx) = (af)(bx) = af(bx) = abf(x) bg(x) = baf(x). These are equal if R is commutative.

From now one, we assume that R is commutative ring.

For R- mod A we define $\operatorname{Hom}_R(A, -)$ takes an R- mod M to the R-—,mod $\operatorname{Hom}_R(A, M)$ and it takes R- mod $f \in \operatorname{Hom}_R(M, N)$ to $f_* \in \operatorname{Hom}_R(\operatorname{Hom}_R(A, M), \operatorname{Hom}_R(A, N))$ the PUSH FORWARD of f.

If $\varphi : A \to M$ and $f : M \to N$ then $f_*\varphi = f \circ \varphi$. if $\varphi \in \operatorname{Hom}_R(A, M)$ then $f_*\varphi \in \operatorname{Hom}_R(A, N)$

Claim:

 $f_*: \operatorname{Hom}_R(A, M) \to \operatorname{Hom}_R(A, N)$ is an R- mod hom. so $a \in R, x \in A$ then $\varphi \in \operatorname{Hom}_R(A, M)$. $f_*(a\varphi)(x) = f \circ (a\varphi)(x) = f(\varphi(ax)) = f(a\varphi(x)) = f(\varphi(x)) = a(f_*\varphi)(x)$

Question:

Let $f \in \operatorname{Hom}_R(M, N)$ when is f_* injective/surjective? Surjective: If f is not surjective, then f_* is not surjective.

Example:

 $R = \mathbb{Z} = M, N = \mathbb{Z}/2\mathbb{Z} = A \text{ then } f = \pi : \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \text{ s.t. } x \mapsto x \mod 2 \text{ is surjective.}$

Then f_* is not surjective. $f_* : \operatorname{Hom}_{\mathbb{Z}} : (\mathbb{Z}/2\mathbb{Z}) \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$.

But we see that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}) = 0$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ and we see that $0 \to \mathbb{Z}/2\mathbb{Z}$ is not surjective, since sets are different size.

Injective: Let $f \in \text{Hom}_R(M, N)$ injective, suppose $\varphi \in \ker f_*$ so $f(\varphi(x)) = 0$, $\forall x \in M$ so $\varphi(x) = 0$, $\forall x \in M$, so f_* is injective.

Theorem 13.5:

Let
$$0 \to M \xrightarrow{f} N \xrightarrow{g} P$$
 to be exact sequence of R-mod-homs
 $\Rightarrow 0 \to \operatorname{Hom}_{R}(A, M) \xrightarrow{f_{*}} \operatorname{Hom}_{R}(A, n) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(A, P)$ is exact (Thm 13.5)

Proof:

Already discussed maps well-defined.

Exactness in $\operatorname{Hom}_R(A, M)$ is exact, since f_* is injective. (since f is injective since first line exact). $\operatorname{Hom}_R(A, N)$ exact requires $\operatorname{Im}(f_*) = \ker(g_*)$

Let $\psi \in \operatorname{im}(f_*)$ so $\psi = f_* \varphi$ for some $\varphi \in \operatorname{Hom}_R(A, M)$. Therefore $g_*(\psi) = g \circ f \circ \varphi$. Note that $g \circ f = 0$ since the first line is exact, therefore $g_* \psi = 0$ so $\psi \in \ker(g_*)$.

Now let $\beta \in \ker(g_*)$. Then $g \circ \beta(x) = 0$ for all $x \in M$ so $\operatorname{Im}(\beta) \subset \ker(g)$. Take $h := f^{-1} : \operatorname{im} f \to M$. IF we draw the scheme, we see that $\alpha = h \circ \beta$ so therefore $\beta = f \circ \alpha = f_* \alpha \in \operatorname{im}(f_*)$

Split exact sequences

Example:

1.
$$0 \to M \xrightarrow{\iota_1} M \oplus P \xrightarrow{\pi_2} P \to 0$$
 where $\iota_1 : x \mapsto (x,0)$ and $\pi_2 : (x,y) \mapsto y$.

A SES IS SPLIT/SPLITS if \exists an R- mod iso $\theta N \xrightarrow{\cong} M \oplus P$. S.t.

commutes

Examples:

- 1. Every SES of K-vector spaces splits.
- 2. Nonexample: $0 \to \mathbb{Z} \xrightarrow{[2]} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} to0$ where [2] means that $x \mapsto 2x$ and $\pi : x \mapsto x \mod 2$ is a non-split. Since if it is a split, then must have that the middle term \mathbb{Z} must be isomorphic to $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ since $2(0,\overline{1}) = (0,\overline{0})$, so the right group has an element of order 2, while the LHS does not have an element of order 2.

Remark:

SES splits then $N \cong M \oplus P$ but ... see conrad splitting of.. Example 1.4. For splittness, it's important and necessary that the maps in

$$0 \to M \to M \bigoplus P \to P \to 0$$
 (Form 14.1)

are ι_1 and π_2

If we have (Form 14.1) we see that we can also notice that $\pi_2 \circ \iota_2 = \mathrm{id}_P$ and $\pi_1 \circ \iota_1 = \mathrm{id}_M$.

14.2 (Splitting) Lemma:

Let $0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$ and $P \xrightarrow{h} N, N \xrightarrow{j} M$ SES Of R-mods, then following equiv.

- 1) above line splits
- 2) $\exists h \in \operatorname{Hom}_R(P, N) \text{ s.t. } g \circ h = \operatorname{id}_P$
- 3) $\exists j \in \operatorname{Hom}_R(N, M)$ s.t. $j \circ f = \operatorname{id}_M$ call h,j splittings of the line

(Lem 14.2)

Proof:

 $2 \Rightarrow 1$ Suppose 2), Let $\varphi : M \oplus P \to N$ s.t. $(x,y) \mapsto f(x) + h(y)$ then $\varphi \in \operatorname{Hom}_R(M \oplus P, N)$. Claim:

Commutes, so $\varphi \circ \iota_1 = f$ and $\pi_2 = g \circ \varphi$ since then we have g(f(x) + h(y)) = g(f(x)) + g(h(y)) = 0 + y, where the 0 follows from that N is exact, and the y follows from the condition that $g \circ h = \mathrm{id}_P$.

It follows that φ is an isomorphism by exercise 2 on HW sheet 4, therfore we get indeed 1) By using $\theta := \varphi^{-1}$

1 ⇒ 2 Suppose $\exists \theta: N \to M \oplus P$ isomorphism s.t. (a.14) commutes. define $h: P \to N$ s.t. $y \mapsto \theta^{-1}(\iota_2(y))$ therefore $g \circ h(y) = g(\theta^{-1}(0,y))$ by commutative of diagram, $\pi_2 \circ \theta = g$ therefore $g(\theta^{-1}(0,y)) = \pi_2(\theta(\theta^{-1}(\iota_2(y)))) - \pi_2(\iota_2(y)) = y$ so we get indeed $g \circ h = \mathrm{id}_P$

Note that $1 \Rightarrow 3$ is similar to $1 \Rightarrow 2$ and $3 \Rightarrow 1$ is similar to $2 \Rightarrow 1$.

Lemma 14.3:

supp. $N \xrightarrow{g} P, P \xrightarrow{h} N$ are R-mod-homs s..t. $g \circ h = \mathrm{id}_P$ Then

1) g surjective

2)
$$0 \to \ker(g) \xrightarrow{\iota} N \xrightarrow{g} P \to 0$$
 is exact

3)
$$N \cong \ker(g) \bigoplus P = \ker(g) \bigoplus \operatorname{im}(g)$$
 (Lem 14.3)

We call h a section of g.

Proof:

- 1. $\forall y \in P, \exists z \in Y \text{ s.t. } g \circ h(z) = y \text{ we see that we can take } z = y. \text{ So } \exists x \in N \text{ s.t. } g(x) = y \text{ so } g \text{ is indeed surjective (Where } x = h(y))$
- 2. By 1, and that there is always an SES by the image of g.
- 3. \cong by (Lem 14.2) from $2 \Rightarrow 1$, = by N = im(q)

Projective modules

$$P$$

$$\downarrow h \qquad \text{, with } h \in \operatorname{Hom}_R(P, N) \& \text{row exact} \qquad (\text{cond } 14.4)$$

$$M \xrightarrow{f} N \rightarrow 0$$

If all (cond 14.4) holds, then P is PROJECTIVE if there $\exists \tilde{h} \in \text{Hom}_R(P, M)$ s.t. $h = f \circ \tilde{h}$ (so $h = f_*(\tilde{h})$ so $h \in \text{im} f_*$), see last picture.

14.5 Proposition:

$$F \operatorname{free} R - \operatorname{mod} \Rightarrow F \operatorname{proj}$$
 (Prop 14.5)

Proof:

F free, so $F \cong \bigoplus_{i \in I} R$. Since F free, fix basis (b_i) of F. Consider diagram like (cond 14.4), $\forall i \in I, \exists x_i \in M \text{ s.t. } h(b_i) = f(x_i)$. Define $\tilde{h}(b_i) = h(b_i)$. Now extend \tilde{h} linearly to $\tilde{h} \in \operatorname{Hom}_R(F, M)$ then $f \circ \tilde{h} = h$.

Extend linearly: $\forall z \in F, \exists ! (\lambda_i)_{i \in I} \text{ for all } i \in R \text{ s.t. } z = \sum_{i \in I} \lambda_i b_i$. Define $\tilde{h}(z) = \sum_{i \in I} \lambda_i \tilde{h}(b_i)$. Here we have finitely many λ_i nonzero. (So z is finite sum).

Lemma 14.6

 $\forall R - \text{mod } M, \exists \text{free } R - \text{mod } F \& \pi \in \text{Hom}_R(F, M) \text{ surjective, so we have } F \xrightarrow{\pi} M \to 0$ (Lem 14.6)

Proof:

$$F = \bigoplus_{x \in M} R \text{ is free with basis } (e_x) \text{ s.t. } x \in M. \text{ Where } (e_x)_y = \delta_{xy} = \begin{cases} 1 \text{ if } x = y \\ 0 \text{ otherwise} \end{cases}$$

Then define $\pi(ex) = x$ and extend linearly, and we can observe that this π is indeed surjective.

Note that if
$$F = \bigoplus_{i \in I} R$$
 if $I = \{1, 2, 3\}$ then $F = R \bigoplus R \bigoplus R = R^3$.
$$\begin{cases} = R^{|M|} \text{ if } |M| < \infty \end{cases}$$

Therefore
$$F = \bigoplus_{x \in M} R \begin{cases} = R^{|M|} \text{ if } |M| < \infty \\ \text{submod of } R^{\mathbb{N}} \text{ if } |M| = \#\mathbb{N} \end{cases}$$

Theorem 14.7:

following equivalent

- 1) P projective
- 2) every SES with P at the end splits
- 3) \exists free $R \text{mod } F \& \text{an } R \text{mod } Q \text{ s.t.} F = P \bigoplus Q$ (Thm 14.7)

Proof:

 $1 \Rightarrow 2$ By Lemma from L13, 2 follows from following claim: Every SES $0 \rightarrow \ker(g) \rightarrow N \xrightarrow{g} P \rightarrow 0$ splits.

Proof of claim:

Consider $\downarrow \operatorname{id}_P$ then P projective, implies $\exists \tilde{h}: P \to N \text{ s.t. } g \circ \tilde{h} = N \xrightarrow{g} P \to 0$

 id_n . Then by splitting Lemma, we get 2.

- $2 \Rightarrow 3$ Suppose 2, by (Lem 14.6), \exists free F and SES $0 \rightarrow \ker(\pi) \xrightarrow{\iota} F \xrightarrow{\pi} P \rightarrow 0$. Then $F \cong \ker(\pi) \oplus P$, which is even more precise then part 3).
- $3\Rightarrow 1$. Suppose 3), Let $F\cong P\oplus Q$, be free consider (cond 14.4), then since F projective, we can repace P by P+Q, so we see that $\exists \tilde{h'}: P\oplus Q \to M$. But we want $\tilde{h}: P\to M$. Therefore use that $\iota_1: P\to P\oplus Q$ and $\tilde{h'}: P\oplus Q\to M$ then we can define $\tilde{h}:=\tilde{h'}\circ\iota_1$.

Now observe $f \circ \tilde{h} = f \circ \tilde{h'} \circ \iota_1 = h \circ \pi_1 \circ \iota_1 = h \circ \mathrm{id}_P$ so this implies 1)

Exercise:

- 1. Every K- vector space is projective.
- 2. $R \text{ PID} \Rightarrow \text{ every projective } R \text{ mod is free, by 3 of (Thm 14.7), since every submod of a free } R \text{ mod is free.}$
- 3. Claim: $\mathbb{Z}/2\mathbb{Z}$ is not a free $\mathbb{Z}/6\mathbb{Z}$ mod. This is because a free modulo of $\mathbb{Z}/6\mathbb{Z}$ is of order infinity or a factor of 6. But it is $\operatorname{proj} \mathbb{Z}/6\mathbb{Z}$ since $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Since $\mathbb{Z}/6\mathbb{Z}$ is a free $\mathbb{Z}/6\mathbb{Z}$ modulo, we can write this as $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$.
- 4. If the modulo on the right is R, then the sequence must split.

R commutative ring

Extra curriculum:

Fix R- mod A. Then any R- mod, M gives that $\operatorname{Hom}_R(A, M)$ is an R, mod.

S.t. $f: M \to N, \varphi: A \to M$ and $f_*\varphi = f \circ \varphi: A \to N$ is associative diagram.

A CATEGORY \mathcal{C} consists of objects (ob(\mathcal{C})), morphisms,(mor(\mathcal{C}) between objects $A \xrightarrow{f} B$ where $A, B \in \mathcal{C}$.

MORPHISM: or arrows, that has domains and codomains.

In this case, write $f \in \text{hom}(A, B)$ (This does not imply that f is a homomorphisms, only a morphism from A to B.)

 $\exists \operatorname{map} \circ : \operatorname{Hom}(A, B) \times \operatorname{Hom}(B, C) \to \operatorname{Hom}(A, C) \text{ with } (f, g) \mapsto g \circ f$ This is:

- • is associative
- $\forall A \in \text{ob}(\mathcal{C}), \exists \text{id}_A \in \text{hom}(A, A) \text{ s.t. } \forall f \in \text{Hom}(A, B) \text{ we have } \text{id}_B \circ f = f = f \circ \text{id}_A$

Example:

$\mathcal{C}^{'}$	$\mathrm{Ob}(\mathcal{C})$	$\operatorname{mor}(\mathcal{C})$
$\underline{\operatorname{set}}$	sets	maps
$\underline{\text{R-mod}}$	R– mods	R– mod-homs
Group	Groups	Group homomorphisms
Top	Topology spaces	cont. functions
$\overline{\mathrm{Rel}}$	Sets	Relations

Rel, stands for all sets with relations (For example Hom $(A, B) = \{R \subset A \times B\}$) $R \subset A \times B, S \subset B \times S \Rightarrow S \circ R = \{(a, c) \in A \times C : \exists b \in B : (a, b) \in R\&(b, c) \in S\}$

Functor $F: \mathcal{C}_1 \to \mathcal{C}_2$ is a "morphism between categories", i.e.,

- $F(ob(\mathcal{C}_1)) \subset ob(\mathcal{C}_2)$
- $F(\operatorname{mor}(\mathcal{C}_1)) \subset \operatorname{mor}(\mathcal{C}_2)$
- $F(\mathrm{id}_A) = \mathrm{id}_F(A)$
- $F(f \circ g) = \begin{cases} F(f) \circ F(g) \text{ call F covariant or} \\ F(g) \circ F(f) \text{ call F contravariant} \end{cases}$

Example:

Forgetful functor R-mod \rightarrow set s.t.

 $M \operatorname{R-mod} H \to M \text{ as a set and } f \in \operatorname{Hom}_R(A,B) \to f : A \to B \text{ as map.}$

Also works for example for groups, Top

This function is Covariant.

Hom-functor Fix $R \mod A$ s.t. $\operatorname{Hom}_R(A, -) : \underline{R\operatorname{-mod}} \to \underline{R\operatorname{-mod}}$ s.t. $M \mapsto \operatorname{Hom}_R(A, M)$ and for $f \in \operatorname{Hom}_R(M, N)$ we have $f \mapsto f_*$ with $f_* \in \operatorname{Hom}_R(\operatorname{Hom}_R(A, M), \operatorname{Hom}_R(A, N))$

A function $F \xrightarrow{R-\text{mod}} \to \xrightarrow{R-\text{mod}}$ is Left exact if for all exact sequences $0 \to M \xrightarrow{f} N \xrightarrow{g} P$ also the sequence $0 \to F(M) \xrightarrow{F(f)} F(N) \xrightarrow{F(g)} F(P)$ is exact. A function $F \xrightarrow{R-\text{mod}} \to \xrightarrow{R-\text{mod}}$ is Left exact if for all exact sequences $M \xrightarrow{f} N \xrightarrow{g} P \to 0$ also the sequence $F(M) \xrightarrow{F(f)} F(N) \xrightarrow{F(g)} F(P) \to 0$ is exact. F is Exact if it is left and right exact.

Recall: $\operatorname{Hom}_R(A, -)$ is left exact, but in general not right exact.

Theorem 15.1:

$$A \text{ R-mod}$$
, then $\text{Hom}_R(A, -)$ is right exact iff A projective (Thm 15.1)

Proof ←

Suppose A projective, Let $M \xrightarrow{f} N \xrightarrow{g} P \to 0$. We want that $\dagger : \operatorname{Hom}_R(A, M) \xrightarrow{f_*} \operatorname{Hom}_R(A, N) \xrightarrow{g_*} \operatorname{Hom}_R(A, P) \to 0$ is exact.

 g_* is surjective: Let $\varphi \in \operatorname{Hom}_R(A, P)$. Consider $\swarrow \exists h \downarrow \varphi$ so A projective $N \stackrel{g}{\longrightarrow} P \rightarrow 0$

hence $\exists h \in \operatorname{Hom}_R(A, N)$ s.t. $\varphi = g \circ h = g_*h$ (so found pre-image namely h)

 $\operatorname{im} f_* \subset \ker(g_* \text{ follows from } g \circ f = 0$

 $\ker(g_* \subset \operatorname{im}(f_*) \text{ Let } \psi \in \ker(g_*) \text{ i.e. } g \circ \psi = 0 \text{ so}$

 $\lim_{y \to \infty} \psi \in \ker(g)$, but we saw that $\ker(g) = \lim_{x \to \infty} f$, since original sequence is exact.

Consider $\swarrow \exists h \quad \downarrow \psi$ since A projective, $\exists h \in \operatorname{Hom}_R(A, M) \text{ s.t. } \psi = M \quad \xrightarrow{f} \quad \operatorname{im}(f) \quad \to \quad 0$ $f \circ h = f_* h \text{ so } \psi \in \operatorname{im} f_*.$

Therefore we see that † is exact.

Proof⇒

Suppose A is not projective, $\Rightarrow \exists \operatorname{diagram} \qquad \downarrow \varphi \qquad \text{s.t. } \nexists h \in \operatorname{Hom}_R(A, N)$ $N \xrightarrow{g} P \rightarrow 0$

with $\varphi = g \circ h$. i.e. $\varphi \in \operatorname{Hom}_R(A, P) \setminus \operatorname{im}(g_*) \operatorname{so} \ker(g) \xrightarrow{\iota} N \xrightarrow{N} \xrightarrow{g} P \to 0$ is exact but $\operatorname{Hom}_R(A, \ker(g)) \xrightarrow{\iota_*} \operatorname{Hom}_R(A, N) \xrightarrow{g_*} \operatorname{Hom}_R(A, P) \to 0$ is not exact.

Snake Lemma:

For $\alpha \in \operatorname{Hom}_R(A, A')$, def. $\operatorname{coker}(\alpha) = A'/\operatorname{im}(\alpha) = A'/\alpha(A)$

Consider comm. diagram of R-mod-homs, with exact rows (black), then ∃ exact sequence (blue)

$$\ker(\alpha) \xrightarrow{f} \ker(\beta) \xrightarrow{g} \ker(\gamma)$$

$$\downarrow \iota \qquad \qquad \downarrow \iota \qquad \qquad \downarrow \iota$$

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

$$\downarrow \alpha \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \gamma \qquad \text{and } \delta : \ker(\gamma) \to \operatorname{coker}(\alpha)$$

$$0 \to A' \xrightarrow{\tilde{f}'} B' \xrightarrow{g'} C' \to 0$$

$$\downarrow \pi \qquad \qquad \downarrow \pi \qquad \qquad \downarrow \pi$$

$$\operatorname{coker}(\alpha) \xrightarrow{\tilde{f}'} \operatorname{coker}(\beta) \xrightarrow{\tilde{g}'} \operatorname{coker}(\gamma)$$

Where $f : \ker(\alpha) \to \ker(\beta)$ is well defined, since $x \in \ker(\alpha) \Rightarrow \beta(f(x)) = f'(\alpha(x)) = 0$ since commutative, so $f(x) \in \ker(\beta)$

Similarly $g : \ker(\beta) \to \ker(\gamma)$ is well-defined.

 $\tilde{f}(y + \alpha(A)) = f'(y) + \beta(B)$ is well-defined, since if $y \in \alpha(A)$ say $y = \alpha(x)$ for $x \in A$, then $f'(y) = \beta(f(x)) \in \beta(B)$.

Similarly \tilde{q}' is well-defined.

 δ is called connecting homomorphism, δ : $\ker(\gamma) \to \operatorname{coker}(\alpha)$ for $c \in \ker(\gamma)$, there exists $b \in B$ s.t. g(b) = c since g is surjective (g is not necessarily surjective).

Since $c \in \ker(\gamma)$, we see that $g'(\beta(b)) = 0$, by commutative diagram, so $\beta(b) \in \ker(g')$. Since exactness, we see that $\ker(g') = \operatorname{im}(f')$ so $\exists a' \in A \text{ s.t. } \beta(b) = f'(a')$.

Define $\delta(c) = \pi(a') = a' + \alpha(A)$

 δ is well-defined, since f' is injective, we see there exists unique $a' \in A'$ s.t. $f'(a') = \beta(b)$. Furthermore we must have δ indep. of choice of b. Suppose $b_1 \in B$ s.t.] $g(b_1) = c$. Therefore $b - b_1 \in \ker(g)$, so, $b - b_1 \in \operatorname{im}(f)$. Therefore exists unique $a \in A$ s.t. $f(a) = b - b_1$. So $\beta(b) - \beta(b_1) = f'(\alpha(a))$, so if $a'_1 \in A'$ s.t. $f'(a'_1) = \beta(b_1)$. Then $a' - a'_1 \in \alpha(A)$, so $\pi(a') = \pi(a'_1)$, so indep. of choices of b.

Complete Proof in Top's notes.

R commutative ring, M, N, S R-mods, then $b: M \times N \to S$ is BILINEAR, if $\forall m \in M, \forall n \in N$, we have that $M \to S$ s.t. $x \mapsto b(x, n)$ and $N \to S$ s.t. $y \mapsto b(m, y)$ are R-mod-homs.

Examples:

- Dot product
- Matrix multiplication
- Scalar products
- $R \times M \to M \text{ s.t. } (a, m) \mapsto a \cdot m$

A TENSOR PRODUCT of M&N (over R) is a pair (T,β) , where T is an R- and $\beta: M \times N \to T$ bilinear, s.t. \forall pairs (S,b) where S is an R- mod and

$$b: M \times N \to S$$
 bilinear, then $\exists ! f \in \operatorname{Hom}_R(T,S)$ s.t. $\bigcup_{f \in T} \beta$ is a commutative diagram

Catch-up session 04-04-2024

Universal property Tensor products: $\operatorname{Hom}_{R-\operatorname{mod}}(M\otimes_R N, L) \cong \operatorname{Bilin}(M\times N, L).$

For example: $R \otimes_R M \cong M$

Note that Tensor product was extra curriculum.

$$\operatorname{Tor}_{R}(M) = \{x \in M : \exists 0 \neq r \in R : rx = 0\}$$
$$\operatorname{Tor}_{\mathbb{Z}}(\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) = 0 \oplus \mathbb{Z}/2\mathbb{Z}$$

NEED TO REMEMBER

L/K SEPERABLE iff $\forall \alpha \in L$, minpol(α) has no multiple roots in $Spl_K(minpol(\alpha))$

L/K NORMAL iff $\forall \alpha \in L$, minpol(α) splits completely into linear terms over L.

$$\operatorname{Tor}(M) := \{ x \in M : \exists a \in R \setminus \{0\} : ax = 0 \}$$

$$\operatorname{Ann}(M) := \{ a \in R : ax = 0, \forall x \in M \}$$

$$\operatorname{Ann}(M) \neq \{0\} \Rightarrow \operatorname{Tor}(M) = M.$$

Equivalent:

1. P projective.

$$\begin{array}{cccc} & & & P \\ P \text{ projective if we have} & & \downarrow h & \text{there exists } \tilde{h} \in \operatorname{Hom}_R(P,M) : h = f \circ \tilde{h}. \\ m & \xrightarrow{f} & N & \to & 0 \end{array}$$

2. Every SES with P at the end, splits:

SES:
$$0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$$
 s.t. $\operatorname{im}(f) = \ker(g)$
SES Splits, if $\exists \theta \in \operatorname{Hom}(N, M \oplus P)$ isomorphic s.t.

3. Exists free $R \mod F$, $R \mod Q$ s.t. $F = P \oplus Q$. F is free $R \mod \text{s.t.} \exists I \text{ s.t. } F = \bigoplus_{i \in I} R$.

Note that F free \Rightarrow F torsion free.