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Lecture 1

Introduction

f=a"+a, 12"+ .. + a1+ ap € Q[ X] polynomial.
Q: "What are its roots?

n=1 thenx-a<x=a
2
n=2 thenz?+pr+q<x=-L+\/(2) ¢

n =3 thenz®+pr?+qgr+r. We see that if we replace by x—£. Then we get 23 +px+q.

Discriminant A = (%) + (g)g. Then one root is {’/—% +VA + {’/—% VA
This is called CARDANO FORMULA

n =4 "solvable by radicals” i.e. there is a formula only involving +, -, /, /e

n >5 then is not solvable by radicals in general. This is Abel Raffini Theorem
Galois explained this in a conceptial way, also over general ground fields. Made
shift from polynomials to field extensions.

Basic definition

K FIELD
K[z]={ap+aiz+...+a,z"n>0,a; € K}

K (x) = Quot(K[x]) = { {F|f.0 € K[X],g# 0}

har(K) =
PRIME FIELD OF A FIELD smallest subfield of K = Qchar(K) =0
F,char(K)=p>0

L/K FIELD EXTENSION L 2 K.

[L: K] =dimgL which isDEGREE OF L OVER K

L/ K finite iff [L : K] < co. Note that [Q(v/2) : Q] =2 < coand [R : Q] = co.
TOWER LAW: L/M /K then [L: K]=[L: M]-[M : K].

A c LSUBSET then

e K[A] =smallest subring of L containing the field K and the set A.

e K(A) =smallest subfield of L containing the field K K and the set A.
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a € L ALGEBRAIC OVER K if 30 # f € K[X]s.t. f(a) = 0.

Ifa € LTRANSCEDENTAL OVER K ifa € L not algebraic over K.

Note that Q(y/7)/Qis transcedental and Q(7)/Q1is transcedental but Q(\/7)/Q(7) is
algebraic.

0 + f € K[X]MINIMAL POLYNOMIAL OF @ € Lover K if fis monic and has minimal
degree. (irreducible and unique).

From Algebraic structures K[ X ] - K[a] with x — a where a algebraic.
Then K[X]/(f) = K[a] = K(a) where f minimal polynomial.
Then [K[a]: K] =deg(f), K-basis of k[a] : 1,a,a?, ..., ads(/)-1,

L/K ALGEBRAIC < Ya € Lare algebraic over K.
L/K TRANSCENDENTAL if L/ K is not algebraic.

Proposition:

L/K is finite = L/ K algebraic.L L -homomorphism iff f|x =idk.
Proof:

Arbitraryz € L. Takea?, 21, ..., 2l&*Kl are K-1lin. dep. Here we use that

[L: K] < co. Therefore we see that Y a;x* = 0so there exists a minimal polynomial.

i=0
So L/ K is algebraic.
The converse is false: Q(v/2, V2, V/2,...]/Qis infinite and algebraic.

a € Lwhere L/ K transcendental then K[a] ~ K[ X ]| polynomial ring and K (a) = K(X) field
of rational functions over K.

L, L' field extensions of field K then a K HOMOMORPHISM L — L’is field homomor-

phism ¢ : L - L's.t. ¢|x = idg.

K 1SOMORPHISM bijective K- homomorphism. L, L’ are K- isomorphic (L 2k L') if — isomorphism L —
L' exists. K—automorphism if K-isomorphism with L = L".

Example:

7:C — Cwith z » Z. R-automorphism is Autg(C) = {id¢, 7} but Aut(C) is uncount-

able.

K field and 0 # f € K[ X]then L/K SPLITTING FIELD OF f OVER k iff
if= ﬁ (r — ;) € L[z] splits completly into linear factors
i1

ii LZK(Oél,...,Oén).
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Proposition 1.1 (1.3.2)

1) Isplitting field L/ K&[L : K] < deg(f)!
2) A splitting field L/ K is unique up to K — isomorphism (Prop 6.5/AS Top II1.5.4)

Proof:

1. Induction on degree of f. Ifdeg(f) = 1, then L = K is splitting field. Other-
wise take irreducible fact fi|f then K[X]/(f1)is a field extension of K of de-

greedeg(f1) < deg(f)and f1(Z) = 0.
Now do induction with (xf = € L[X].

2. For induction prove slightly more general statement. ¢y — ¢ : Ki[X] —
Ko X]with Y a;a’ = Y ¢o(a;)xt.
K, = Kyby ¢ps.t.0# f1 € Ki[X] = fo = ¢o(f1) € K3[X]. Then L;/K; splitting
fields of f; fori = 1,2. Then there exists ¢s.t. L; — Lo by ¢, Which implies unique-
ness by taking K = Ky = K, ¢¢ = idg.

We proof this by induction.

If f constant, take L; = K.

Otherwise take ¢1|f; irreducible. Since isomorphic with ¢y we see that ¢o = ¢o(¢p1) €
K[ X].

L;/ K; splitting field: Ja € Ly s.t. ¢1(a) = 0,and 38 € Loy s.t. p2(5) = 0. So we see
that K1[a] — K[f]: X aix' = ¥ ¢o(a:) B

By induction can extend ¢ to¢: L1 — L.

Example:

K =Q, f = x3 -2, splitting field Q(/2)/Q. Then f = (X - /2)- fo e Q(3/2)[X]. Note
that f, has roots in C \ R while Q(/2) ¢ R.

Now note that the other roots of x3 — 2 are (3 Y2, G ¥/2. So then Q(\d/ﬁ, (3 \3/5)/@ is a
splitting field of degree3-2 = 3!.
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Lecture 2

Normal extensions

L/K NORMALIiffV f € K[x] that hasroot in L : f splits over Liff Va € L : minpol x () splits
over L.

H < Gsubgroup and [G: H]=2= H 4Gie. H=gHg 'for allg € G.
Spl,, () is splitting field of a.over M.

Theorem 2.1 (Bianchi 3.6):

L/K finite then following equivalent :
1)L/ K normal
2)L = sply(g) for someg € K[x] (Thm 2.1/Bianchi 3.6)

Proof:

1=2 L=K(ay,...,a,)since L/K finite. Def. f; := minpol («;) which splits over L,
since normal. Define g := H fi- Therefore L = K(ay,...,a,) € Splg(g) € L. For

this we must have equahty throughout

2=1 «ael,f:=minpolg(a), M :=Spl,(f)2 L. Want M = L. Let 5 M : f(/3) = 0.
From lecture 1:
Splk(a)(9) = L ——— Spl)(g) = L(B)

T T

Kla) ———= 5 k()

S

Hence [L : K] = [L(B) : K], hence3 € L. Therefore M ¢ L. Since we de-
fined M in such a way that M 2 L, we see that we get L = M.

Example:

Q(v/2,V/3) = Splg((X2 - 2)(X? - 3))/Quormal

Splg(X? - 2) = Q(+/2,(3)/Q normal

F,(t1/7) = Splg (1 (XP ) /F,(t) normal.

Warning: normality is not transitive, i.e. if we have L/ M normal, M /K normal then it
does not imply that L/K is normal.

Warning: Distinguish Autx (L) as field extensions or as vector space.
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Separable extensions
1. 0# f e K[z]separable iff f hs no multiple roots in Spl,(f)
2. « € Lseparable over K iff minpol - («) separable.
3. L/K separable iff alla € L separable over K

Non-example:
o [, (t1/7)/F,(t) not separable since X -t = (X - t1/P)P

e [L: K] =2not separableiff char(K) = 2and L = K (v/d) withd € K \ K©
where K" ={ke K|32 € Z;2* = k}

This is because a € L then minpol (a) = (X —a)(X -@) = X2 -pX + g wherep =
o+, q = aa. Since anot separable over K iff o = @ therefore p = 2a € L.

Example:
X?+ X +1 eFy[X]irreducible and separable.

K field, then
(=) : K[X] > K[X]st. f=) aiz’ v f:= > iaz"™
=0 i1

Proposition 2.2
f,g € K[X]then:

1)formal derivative is K — linear (as vector space)
2)LEIBNIZ RULE: (fg) = f'g+ f¢’
3) root avof fis SIMPLE: (#roots(«) = 1iff f'(«) # 0 (Prop 2.2)

Example:
(XP-1t) =pXPt=0ifchar(K)=p>0.

K isPERFECTIiff K = K7 := {zP : z € K} iff frobenius norm is surjective.

Theorem 2.3 (Bianchi 4.4)

L/K finite is SEPARABLEif
1)char(K) =0, or
2)char(K)=p>0andp | [L: K]or
3)char(K) =p>0and K = K? (Thm 2.3/Bianchi 4.4)
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Proof:

a€ L, f=minpol,(a). feM: f(B)=0,f=minpol,(S).
If 5 not simple root = f/(f) = O hence f’ = 0so f irreducible.
If char(K) = p = f = ag contradiction.

char(K) =p= f = g(zP) hencep|[K(«) : K]|[L: K].

K = K?, f = g(zP) = h(x)P reducible, contradiction.

Therefore the following Corollary:
L/ K finite only INSEPARABLE if char(K) = p > 0is not perfect &p|[L: K] (Cor 2.4)
Proposition 2.5 (transitivity of separability)

L/M K then following equivalent
1) L/ K separable
2) L/M & M | K separable (Prop 2.5)
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Lecture 3

K < L, M then Homg (L, M) = {¢: L - M field hom. s.t. ¢|x =idg}

Properties of separability

L/K is normal field extension iff Vo € L the minpol - («) splits completly over L
L/K is SEPARABLE FIELD EXTENSIONiff Vo € L, the minpol, () does not have mul-
tiple roots in a splitting field of f.

Example L/ K is separable if char(K') = 0 or char(K) = p > 0 and K is perfect,i.e. K =
KP={arlaec K}

Note that this is not an iff statement. As inF,(t)/F,(t)of degreen, is separable,
while F,,(¢) is not perfect.

Lemma 3.1:

K («)/K finite simple (gen. by 1 element) field extension, M /K some extension
Inatural bijection Homg (L(a), M) = {roots of fin M} with f = minpol;(«)

— is canonical hom. with Homg (K (a), M) 3 ¢ = p(a)
2#Homg (K (a), M) <deg(f) =[K(a): K] < o

3 f separable, splits over M = #Homy (K (), M) = [K(a) : K] (Lem 3.1)
Proof of 1:
Hom (K (0), M) > Homg(K[al/f. M) > {g:Homg(K[z], M)lg(f) = 0}
KLI)

Therefore 5 € M|f(B3) =0, so f cker(g) < z —root of fin M.

2,3 direct consequence of 1.
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Proposition 3.2:

L/K finite, M/ K some field extension.
1) #Homy (L, M) < [L: K] < 0o
2) L/ K inseparable then #Homg (L, M) < [L: K]
3) L/ K separable = AM s.t. #Homy (L, M) = [L : K|

so M separates roots of minpols of v € L (Prop 3.2)

Proof:

1. Induction on[L : K]. Base case: L = K then okay. Leta e L ~ K. By Lemma
#Hompg (K (a), M) < [K(«) : K]. By induction everyo : K(a) < M has at
most [L : K(«)]extensions to L - K.

Therefore #Hong (L, M) <[L: K(a)][K(«a): K] =[L: K].

2. Take a € Linseparable over K. By Lemma, we see then
#Homy (K (o), M) < [K(«) : K].Hence from 1, we see that
#Homy (L, M) < [K(«a): K][L: K(a)]=[L: K].

3. L=K(aq,...,a,)and let f; := minpol («;), separable over K.
Let M’ split all f;. Claim this M works (i.e. M = M").
Proof by induction. By Lemma we see forn = 1, we have f; which splits over M,
so#Hompy (K (o), M) = [K() : K].
Vo : K(ay) < M count number of extensions.d : L - M. Claim: Exactly
[L : K(aq)]extensions. Extension means commutative diagram. So ifiota :
K(ay) > Lyo: K(ay) > Mandg: L — Mtheno =go..
Need to verify htat g; := minpol K(al)(ai)izz splits under o in M in order to apply
the induction hypothesis. g;|f; € K[X]theno(g;)|o(f;) = fi € K[X].
fisplits over M hence alsoo(g;). le.., the induction hypothesis is satisfied,
so M = M'. Therefore #homy (L, M) >[L: K(a)] - [K(«): K]=[L: K]. Since
we already had #Homy (L, M) < [L: K] we see that #Homg (L, M) = [L : K.

Theorem 3.3:
L/K finite so L = K (v, ..., a,) if a; separable over K = L/ K separable (Thm 3.3)

Proof:
From (Prop 3.2).3 we see that IM /K s.t. #Homy (L, M) = [L : K]
,therefore by (Prop 3.2).2 L/ K is separable.
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Corollary:
A splitting field of a separable polynomial f is separable.
Proof:
a;root of f, and f; := minpol («;)|f. Then since f sep., we see that f; sep.
So by (Thm 3.3) L/ K sep.

L/K finite is GALOISiff / K is normal and sep. (Note that this is also Bianchi 5.10)
We can define it for alg. field extensions.

Proposition 3.4 (Bianchi 5.4):

L/K finite then following equivalent
1)L/ K Galois
2) L splitting field of sep polynomial over K (Prop 3.4/Bianchi 5.4)

Proof:

1 = 2 Normality criterion = L = Spl,(f), f € K[x]. Now assume f = ﬁ fi where f; irreducible
i=1
and square free factorization. L = spl(f)so split overl,, so f; have root in L.

Since sep. we see f; have only simple roots, we see that since f = [] f;is sep.
i=1
2=1 L=Spl,(f)= L/K is normal by normal criterion.
By Corollary above, we see that since L = spl, (f) we have sep.

Lemma 3.5:
L/K algebraic field extension = Homg (L, L) = Autg (L) (Lem 3.5)

Proof:

Every field hom. is injective. So only have to show that Homy (L, L) is surjective.
[L: K] < oo we see that it is already clear since tehn surjective automatically follows.
So we just need to reduce to finite extensions.

Let ¢ € Homg (L, L). Let o € L. Then since L/K is algebraic, 30 # f € L[x]: f(a) = 0.
Then Vi(f) = {5 € L|f(B) = 0} which is the vanishing set of fin L. We see that this
set is finite.

Claim:g(VL(f)) € VL(f)- N
¢ = VL(f) = Vi(f)is injective because ¢isV L(f) finite, so therefore¢ : V. (f) —
VL(f). Therefore Vo : ¢ : L - Lsurjective so automorphism.

Let f = éaixithenqﬁ(f(ﬁ)) _ g(égiﬁi) _ jzo(b(ai)(b(ﬁ)i. Since ¢l = idg we see
that 9(/(9)) = 3 a6 (8)'s0 G(AVL(S).
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Lecture 4
VL(f) ={B e L|f(B) = 0}.
Note:

Any M /K s.t.Va € L : minpol () splits without multiple factors, satisfies
#Homg (L, M) =[L: K].
We see that in the lecture Lemma 4.1, is in fact (Lem 3.5)

Properties Galois extensions

Proposition 4.2 (Bianchi 5.8)

L/K finite then following equivalent
1) L/ K Galois
2) #Gal(L/K) = #Autk (L) = [L: K] (Prop 4.2/Bianchi 5.8)

Proof:

1 =2 note that [L: K] prop_t 13 #Homy (L, L) 2" #Autx(L).

2=1 TBS:Ya € Lwe must have f = minpol(«)splits without multiple factors
over L < #V.(f) =deg(f) = [K(«) : K]. Note that #V.(f) 2 #Hom (K («), L).
Take arbitrary o € Homy, (K («), L). Then o extends to at most [ L : K («)] exntesions
toL. #Homg (L, L) = #Autg (L) =[L: K].
Note that #Homy (L, L) = £V, (F)[L : K(a)] < deg(f) - [L 5 K(a)] = [K(a)
K[L: K(a)] <[L: K],
Since [L: K] =[L: K]we get that #V(f) = deg(f) = [K(«) : K] which implies
that Vo € L, minpol («) splits into linear terms without multiplicity in L.

For L/ K galois,GALOIS GROUP Gal(L, K') = Autx (L) with composition as group low.
SoGal(L,K) = {0 : L - L|o|k = idk} since extension is finite, we see that group is
finite, and #Gal(L/K) = [L: K|

Galois group of separable polynomial, is the galois group of a splitting ﬁeld
If 2 field extensions L/L L /K with ¢ : L — L'isomorphic, then ¢,Gal(L/K) — Gal(L'/K)

We see that g, (o) : L'/ N LIS LS so Ll > Iis isomorphic.
Lemma 4.3 (Bianchi 5.5):

L/K finite Galois ext., K c F' c Linterm. field ext. = L/F Galois
(Lem 4.3/Bianchi 5.5)
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Do not really understand what happens in next section:
L/K arbitrary field extensions, then Auty (L) = {o: L = Ls.t.o|x =idg}
If we have L/M /K then Aut(L) = o|y = id|ps == 0|k = idk.
AutM(L) < AlltK(L)

e Therefore well-defined map {M|L 2 M 2 K} — {subgroups of Auty(L)}s..t. M ~

o If M’ c M then Auty (L) < Autyy (L)
Note that this map is bijective if L/ K finite Galois with inverse function:
H<Gal(L/K)~ L7 ={aeLlo(a) =,Vo e H}.

e M = Lthen Aut, (L) = {id.}.
e M = K then Autg(L)is full group.

We want that LA« (L) = K. We need to use L]/ K Galois, because otherwise it is false.

IfL = Q(¥/2)/Qis not normal, Autgy = {0 : L = Llo|y = id;} therefore we see

that o(/2) = (i</2. Note that since o (V/2) € L ¢ Rwe see that o(/2) = ¥/2. There-

fore o fixes a generator /2 of L therefore o = id;, therefore Autg(L) = {id} therefore LAute(L) =
Ld=12..

If L = Q(~/2)/Qthen o (v/2) = 0(3/52) = 0(V/2)2 = (£v/2)? = /2 therefore we see ...

L/K not separabe so L = F,(t'/7) [F,(t) = K, where L = Spl;(X?—t) with o € Autg (L) maps
roots of X? — tto roots. There is exactly one root X? —t = (X — t'/P)P.  There-

fore Autg (L) = {idy} = LA«(L) = [, 2 K. Corollary 4.4 (Bianchi 5.9):

L/K finite then following equivalent:
1) L/ K Galois
20 LA (E) = )¢ (Cor 4.4/Bianchi 5.9)

Proof:

1=2 YaeL,VoeAutg(L),0(a) = athereforea € K.
Let av € LAutk(L) = AutK(L) < AutK(a)(L).
Since K ¢ K () by the inclusion rev. We have Aut g ()(L) < Autg (L)
50 Aut g () (L) = Autg (L)
Therefore [L : K ()] = #Aut k(L) = #Autg (L) = [L: K].
Therefore [K(«) : K] = 1by tower lawso« € K. Which is what we wanted to
show.
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2=1 G = Autg(L). ShowVa € L, we have f = minpol, («)splits into multiple
factors in L.
Defineg:= [T (X —o(a)) € L[ X].
oeG

Claim: g € K[ X ] where K = LY.
V7 e Gwe haverg = H (X -70(a))=II (X -0(a)) = H (X -0(a))=g9.

ie. Tpermutes the roots of g, hence it ﬁxes the coefﬁments hence

g€ LG[z] 2 K[X]. If,o = idwe get g(a) = 0. This is because one of the terms
in the definition of gis equal to zero, so the whole product is equal to zero,
sog(a) =0. Sog e K[X]implies that minpol (a)|gso f splits into linear factors
in L hence L/ K is Galois.
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Lecture 5

L/ K finite is galois <> normal+separable <> L = Spl(f), f € K[x]separable <> #Autx (L) =
[L: K]« LAwx(L) = k.
In this case: Gal(L/K) = Autg(L).

Lemma 5.1 (Top I1.2.2)

L/K finite field extension s.t. #{M : L/M|K} < oo = Lsimple,i.e. 3a € Ls.t. L = K ()
(Lem 5.1/Top 11.2.2)

Proof:
., LIK . . . .
Case 1 K finite = Lfinite= L*is cyclic (i.e. L = (a))= L = K(«) simple.

Case 2 L=K(ay,...,q,)since L/K finite.

Prove by induction that K («, a’) simple.

Ifn =1, we see that L = K (1) so already simple.

#{K(a + M)A € K} < oosince subfield of L/K. Where K infinite. So pi-

geon hole principle: 3N # X ¢ K : K(a+ Aa’') = K(a+ Na') =t M. There-

forea + Aa/;a+ Mo/ € M = (A - N)a € M. Since A # X we see that A — X\ #

Osoa’ € M. So thena = (a+ Aa') — Ao’ € M.

Therefore K (o, ') 2 M 5 a,a’ hence K(a,a') = M = K(a + Aa’). Therefore

base case holds).

For the induction step, assume that K (v, . .., 1) = M(&). Therefore K (v, ..., o) =
M (&, ) = M(a). By using that we proved it for 2 elements.

Galois correspondence

Galois correspondence 5.2 (Bianchi 6.3):

L/ K finite Galois has inclusion-reversion bijection:

a:M~—Gal(L/M)

B:H~LH

{M:L/IM|K} <+—— {H<Gal(L/K)}
ainjective, Ssurjective (Gal Cor 5.2/Bianchi 6.3)
Observation:

Gal(L/K) finite, therefore finitely many subgroups H, therefore { H < Gal(L/K)} finite.
SInce «vinjective, we see that {M : L/M /K } is finite.
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Proof:

We only have to prove that VH < Gal(L/K) we have Gal(L/L") = H.

By (Prop 4.2/Bianchi 5.8) #Gal(L/K) = [L : K] < oo. Since «injective,L/K only fin.
many subfields because the finite group Gal(L/K) has only finitely many subfields.
Therefore by (Lem 5.1/Top 11.2.2),L = K(«) is simple.

Trick f := H (X -o(a)) e L[ X]

VreH: Tf fwherer f = H (X -710(a)) = H (X -6(a)) = fsince H is a group.

Therefore coeffs of f are in LH sofeLH[X]. Therefore #H =deg(f)>[L:L"]since L =
Spl;u(f). Note that[L : LH] = #Gal(L/L")since L/L" is Galois. So far there-
fore #H > #Gal(L/LH).

But H < Gal(L/LH) because H fixes L by definition of L. SO #H < #Gal(L/L7).
But we had #Gal(L/L") < #H so#H = #Gal(L/L"). We also have H < Gal(L/L") but
since cardinality of both groups are the same, we see that H = Gal(L/L).

Lemma 5.3 (Bianchi 6.4)

ogeGal(L/K) ~ o(M):={o(a)|lae M} c Lfield
=Gal(L/o(M)) =oGal(L/M)o™ = {oro™ |7 € Gal(L/M)} (Lem 5.3/Bianchi 6.4)

Proof:

Let 7 € Gal(L/K) thent e Gal(L/o(M))

iff 7(o(a)) =0o(a)for allo(a) e s (M)soVa e M.
Iffo-tro)(a) =a,Vae M.

Iffo~l7r0 e Gal(L/M)iff 7 € cGal(L/M)oL.

Proposition 5.4

L/K finite Galois with L/M /K then M /K is normal (so Galois) iff
N :=Gal(L/M) <G := Gal(L/K)

then Gal(L/K)/Gal(L/M) - Gal(M/K)s.t.cN = (M) well def. group isom.
(Prop 5.4)

Proof:
N <Gnormal & oNo-! = N,VoeG. Iff,Gal(L/o(M)) = Gal(L/M),Vo €G.
Iffo(M) = Mby Gall. correspondence, iffo(M) c M since we have a homomor-

phism from o (M) - M which is an automorphism (since finite field extension), there-
forea(M) < M = M co(M), so M =o(M).
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To show o (M) € M,Vo € Giff M/ K normal:

<. Assume M /K normal. Leta € M,0 € G, f := minpol(«), then f(o(«)) olic=idic
o(f(a))=0(0)=0
Since M /K normal, f splits over M, soo(a) € M.

= Assumeo(M) c M,VoeG. Letae M,g:= [1(X -o(a)). Sinceo(a) € M, we see
oeg
that g € M[X]. SinceTg = g, V7 € G, we see that g € K[ X ] therefore minpol(«)|g.

Since g splits over M, we see that minpol . («) splits over M. Hence M /K is normal.
So we only need to check the isomorphism. Define ¢ : Gal(L/K) - Gal(M /K ) witho
olp. Since M /K normal, we see well-defined homomorphism, becuasea(M) = M.
We see that ker(¢) = {0 € Gal(L/K)|o|y = idy} = Gal(L/M). By using homomor-
phism theorem of groups, we see that Gal(L/K)/ker(¢) — Gal(M/K)is injective,
sot: Gal(L/K)/Gal(L/M) - Gal(M/K) is injective.

To provetis isomorphism, it is enough to prove that #(Gal(L/K)/Gal(L/M)) =
#Gal(M/K). Note that[L : K|[L: M] = [M : K]by tower law. so indeed iso-
morphism. By Tower law, we see surjective, so therefore Gal(L/K)/Gal(L/M) —
Gal(M/K)is indeed isomorphism.

Lemma 5.5:
L/K finite sep. = 3L/Ls.t. L/ K finite Galois (Lem. 5.5)

Proof:

L/K finite then L(ay,...,a,9. fi = minpoly(«;)separable. 'WLOG, pairwise co-
prime. (otherwise delete multiple ones, since either equal or coprime (Note irreducib-
lity since minimal polynomial).). 7= Spl.(I] f;) 2 Lseparable, normal and finite.

Theorem 5.6 (Bianchi 6.5):
L/K fin. separable = Ja € Ls.t. L = K(«) so simple (Thm 5.6/Bianchi 6.5)

Proof:

By (Gal Cor 5.2/Bianchi 6.3) we see that it is sufficient to show that L/K has only
finitely many subfields. By (Lem. 5.5) L/L/K finite and Galois, therefore L/L has
finitely many subfields, so L/ K has only finitely many subfields.

Example:

Char(K) # 2therefore L/K quadratic has the form L = K(\/a)witha € K \x KP =
K~ {b?|be K}. Note that L = Spl; (X2 - a) normal and separable, sinceif f = X2 - a,
then (f, f') = (X2 - a,2X) = 1for X # 0. Therefore #Gal(K(y/a)/K) = [K(Va :
K] = 2. Denote the zeros of a polynomial fover Lby Vi(f). Therefore we see
that o(VL (X2 -a)) = V(X2 -a) = {£\/a}.
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Lecture 6

Lemma 6.1
Missing

Example 6.2 (6.6 Bainchi)

L=Q(+v/2,v/3). Claim:Gal(L/Q) = (Z/27)?.

Consider Ly == Q(\/2), Ly == Q(\/3).

Claim: Ly # Lo. Otherwise Gal(L;/Q) = Gal(Ly/Q) = {idy,,0)}.

So theno : V2 —\/5,\/3 — —/3. Which would imply that 0(\/§\/§) =v2V3. So
then /6 € Q whic h is a contradiction, so Ly # L.

WE see that we have Q(v/2,v/3)/Q(v/2)/Q. IfQ(v/2,v/3) := L = Ly - Lythen [L : Q] =
2.2 =4. Therefore Gal(L/Q) = Z/4Z or Gal(L/Q) = (Z/27)?. Note that Z/4Z has ex-
actly 1 subgroup, while Gal(L/Q) has more then 1 so contradiction. Therefore Gal(L/Q)

(Z]27.)%. Note that (Z/27Z)? has 3 proper subgroups: ((é)) : <((1))) , ((1))

What is 7, 01f Ly = L™ then (o7)(vV6) = 0(v/3(=v/3)) = V650 then /6 € Lsso there-
fore [Ls: Q] = 2.

Example 6.3

L := Splg(X? - 2). We see that2 = [Q(¢) : Qland3 = [Q(¥/2) : Q)]. Both di-
vide[L : Q]. Note that Gal(L/Q) < S3 by Lemma 6.1, therefore #Gal(L/Q)|3! = 6
Proper subgroups of Sz are ((1,2,3)) = {1,(1,2,3),(1,3,2)} and ((12)), ((13)), ((23)).
Those subgroups are not normal. Therefore (Q(/2))/Q, (Q(+/2)¢3)/Q, (Q(/2)¢3)/Q are

not normal.
Cyclotomic fields
Proposition 6.4/Bianchi 7.3

Char(K) | n= X" -1¢ K[X]separable (Prop 6.4/Bianchi 7.3)

Proof: (X" -1)" = nX" ! # 0, where (X" - 1) # OandnX™! # 0. Therefore (X" -
1,nX" 1) =180 X™ - 1separable.

Assume char(K) | n.

Definition 6.5

Lfield, u,(L) = {¢,L*|¢™ = 1} group of n—th roots of unity in L.
proposition 6.6/ Top I11.5.4

(L) is finite cyclic (Prop 6.5/AS Top I11.5.4)
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Example:

L =Cthen 11, (C) = {*3*0 <k <n .

Definition 6.6

Cn € (L) PRIMITIVE iff ord(¢,,) = niff () = pn(L).

K (pn,) :=Spl(X™—1). Note that K (u,) = K((,) iff (,, is primitive.
Example:

Cn € IFq And Ord(gn)Kq - 1) = #]F;

Property:

(¢, primitive then (2 primitive) iff (a,n) = 1.

Example:

Q(&) = Q(v/-3) since (3 -1 = 0but (3 - 1 # 0, therefore root of% =22 +x+1. Roots

-1£v12-41 _ -1+v/-3
are 5 = ) .

Lemma 6.7/Bianchi 7.8

(p primitive n-th root of unityL := K((,), G = Gal(L/K)

. {(1) o €G> o(Cy) = Cowith (a,n) = 1

(2) VCepn(L),o(C) = (Lemma 6.7/Bianchi 7.8)

Proof: ( € Gmaps roots of ™ — 1 to roots, soo((,) = (¢for somea € Zsince ((,) =
fin (L)

o € Autg (L) thereforeo|,, )y € Aut(u,(L))therefore o maps generators of i, (L) to
genarators of u1,,(L). Note that therefore (a,n) = 1.

Take ¢ € p, (L) therefore ¢ = (¢ withb € Zso theno(¢) = o(¢t) = ()b = (¢2¢)P = (2 =
(Gh)e=¢

THE MOD-N CYCLIOTOMIC CHARACTER OF K

Xk Gal(K (G)/K) = (Z[nZ)*s.t.0 = Xxa(0) = ag- 0(Ca) = Ga°
N-TH CYCLOTOMIC POLYNOMIAL:

O, = 1 (X -¢p)e K[X].

ac(Z[nZ)*
Proposition 6.8/Bianchi 7.9

1) Xk.n injective group homo. independent of choice of primitive nth root ¢,
2) @, is irreducible < x g , surjective
(Prop 6.8/Bianchi 7.9)

Proof:
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1) (Lemma 6.7/Bianchi 7.8) implies x i ,, well defined and independent of (,,. x k, homomorphism
with o, 7 € Gal(K ((,), K) s.t.(07)(¢a) = ¢

Note that (07)(Ga) = (G 7)) = (G )xaen() = (Gron(7 yusn(n) = Gyren (2 g

in (Z/nZ)* we see that (X7 = ¢Xron(@xnlm),

X k.n injective, so (x (o)1 implies CffK’"(U) =0((,). Therefore o fixes (,,. Now use that ((,,) =

tin (L) so o fixes Lhenceo =1idy.

2) minpol ((,)| P, because ®,,((,) = 0. Therefore #(Z/nZ)* = deg(®,,) > deg(minpol((,)) =
[K(Gn) : KT = #Gal(K(Ga)/K).

Therefore equality iff @, irreducible, so #Gal(K ((,)/K) = #(Z[nZ)*. Since xfn is

injective, this implies surjectiveness.
Theorem 6.9/Bianchi 7.12

®,, € Z[ X ] monic and irreducible (thm 6.9/Bianchi 7.12)

Proof:

®,| X" -1eZ[X],by Gauss lemma, we see that ®,, monic in Z[ X].

f = minpolgy(¢,). Since(, primitive,nth root of unity, we see that X" -1 = f-
hwhere h € Z[ X ] monic.

If for p | n prime, we see that f(¢h) # 9. Note that 0 = (¢5)" -1 = f(¢h)-h(¢h). So(,is
a root of h(xzP). Therefore f|h(aP)soh(aP) = f-g.

f,g € Z[z]monic by gauss. Can reduce coefficients modpto get h(z?) = fg = f3.
So(h)? = h(x?), by Frobini. Therefore (h,f) # 1. So X" -1has multiple roots
so (X - 1, X7 - 1) # 1. But we see that this is equal to (nX" !, X" — 1) which is
nonzero, since p | nso therefore (nX"1, X™ - 1) = 1. So contradiction.

k
Vp | n, £(¢7) = Oany root of ®,is(e. Since(a,n) = 1. Writea = []p/*. By repeat-
i1

ing f(¢h) =0, we get for those p; that f({2) = 0.

Note:

Frob, : (Z/pZ)[X] - (Z/pZ)[ X]is a ring hom. So Frob, acts trivially on the coeffi-
cients in Z/pZ
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Lecture 7
If char(K) | n, then

Xin : Gal(K (Go)/K) = (Z[nZ)*st.0 > (as: 0(G) = Gi7)
Is abelian extension.

x surjective iff @, = [ (X -£&2)is irreducible in K[ X].
ae(Z[nZ)*

Holds if K = Qs0 [Q(¢n) : Q] = ().

Kronecker-Weber Theorem:
K/Qabelian= 3n >1:Q(({,) 2 K 2 Q.(arithmetic statement)

Extensions of [,

Theorem 7.1/AS IX

Vn > 1, 3 extension Fyn /[F, of degreenup to isomorphisms, Fyn = Sply (X "~ X)
(thm 7.1.1./AS IX.1.1)

And
Gal(F,»/IF,) = (Frob,) 2 Z/nZ with Frob, : = x%is cyclic =~ (thm 7.1.2/AS IX.1.1)

Proof:

1) [AS IX.1.1]

2) Frob, € Gal(F,» /F,) because z¢" = x for all z € Fyn with ord(Frob)|n.

1<k<n= Frob’; stz e Iffrob]; = idgem sox?” — 2 = Ofor allq e Fy» and we see
we have < for degrees, there we use k < n.

Cyclic extensions

Lemma 7.2 (lin. independence of characters)

Lfield, G group, 0; : G — L pairwise dist. homo.

1=1

= 0;lin. independent (i.e. Z No;i=0=L3)\ = 0) (Lemma 7.2)
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Ass. minimal relation, i.e.,\; # 0, Vi. Then since o; pairwise distinct, exisetsg € G :
01(g) # 02(g). ThenVh € G we get

Z%(Qh) = ZAz’Uz’(Q)Uz‘(h) =0

a1(g) i)\io—i - ikiai(g)ai(h) =0
2 Ai(o1(g) —0i(9))oi(h) = 0,Yh e G

Note that o1(g) —0:(g) =0ifi = land 01(g) —0:(g) # 0ifi #. This means that i Aio; is
i=1

not minimal, which is a contradiction. So there is not a minimal relation

Theorem 7.3/ (Bianchi 7.18)(classification of cyclic extensions)

char(K) | n,(, € K*
1)ce K*/(K*)" = K({/c)/K is cyclic of ordern
2)Gal(L/K) 2 Z/nZ = 3ce K*s.t. L = K({/c) (Thm 7.3,Bianchi 7.18)

Proof:

1) an—c=T] (X (=1 ¢/e) e K({/c). Splits over K (/c)since(, € K.

Hence K( /c)/K = Spl(X™ - ¢)is normal. Since i1 {/c) are not roots for
(X™ - ¢)' we see that the roots (i1 {/care distinct (fori = 1,...,n). Therefore
we see that K(¢/c)/K is separable, so Galois.

o€ G = Gal(K(Y/()/K), we see that sigma maps roots to roots. Soo(¥/c) =

no /e = k(o) Ye, so we see that we get k: G > pn(K) 2 (Z/nZ)]o(/c).

Flrst prove k is a homomorphism.

 (7)(V0) = o(r(Y)) = oG Y0) = G0 (4/6) = Gir G /e = G (+/2)

Kk injective, then k(o) = 1,80 o fixes ¥/c generates r( Q/_) soo =id

kis surjective ifxé(c) = 1,Vo € @, then (¢2)* v/ = o(/0) = /.
Since ord( {/c) = nwe getn|d.

(Lemma 7.2)

n-1
2) Gal(L/K) 2 Z/nZ = (o) = {l,0,...,0"'} = " 3Fa: ¥ o, o'(«a) # Oplays
i=0
the role of {/c.
n—1 . . n—-1
o(h) = £ (-n7ioti (o) "G S c-(f“)am(a) = Ga-b

Therefore o (b") = o(b)™ = (¢,b)™ = b™. Hereb := < (i) givl ().

=0
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Soc(b) = (,b # btherefore o?(b) = biff n|so Gal(L/K (b)) = {id} so L = K(b)/K cyclic
of ordern.

Symmetric polynomials

K field, n > 1, K(Xy,...,X,) function field in n variables, which is Frac( K[ X1, ..., X,]).
K(z)> fu(2) = (z=21)(2 = x2) ... (2 — x,) with,deg(f,) = n. Here(z) = (x1,...,2,).
And f,(2) =27 — 012"V + 092" 2 1.+ (=1)"0,.

oi(x1,...,x,)areith elementary SYMMETRIC POLYNOMIALS inn variables. Are in-
variant under permuting x;i.e. z; = x,;) where T € S5,,.

01 = T1+To+. . .+, 09 = T1To+T1T3+. . .+Ty_ 12, and o, = 21-1, where o; has (7} ) summands
M :=K(oy,...,0,) < K(2)% € K(z).

We show now that we have K (z)% = K ()

Note that K(z) = Spl,,(f.) therefore we get [K(z) : M] < deg(f,)! = n!we see
that Gal(K(z)/M) = S,.

We want to show also surjective.

V7 €Sy, (w; = x,¢y) € Gal(K (/M) because it fixes o;. Therefore #Gal(K (x)/M)
#S, =n!. SoGal(K(x)/M) =n!, therefore Gal(K (z)/M) = S,.

I\

Example:

n=2fo=(Z-121)(Z-x9) =22 - (X1 + X2)Z + X1 X5 = 22 - 017 + 09.

We see that (5 = —1 which is not equal to 1 if Char(K) |/ 2.

[K(X1,X2) : K(01,00)] = #85 = 21 = 2. Leth = (X = Xy — X, so— b
(X1 - X2)2 S00: X1 o Xa, Xy > X — 1, theno(h?) = (Xo - X1)% = (X1 - X5)2 = b.
Note that b2 = X2 - 2X, X + X2. Sob e K(X1, X5)% = K(0y,00).

Note thatb? — (X1 + X5)? = b2 - 07 = -4X1Xy = —40y. Thereforeb? = o} — 4oy.
So K(X1,X32) = K(o1,09)[\/0? —402], note thato? — 409is the discriminant of fs,
s0 K (21,22) = K(01,02)[\/D(f2)].

b=Xi-Xo,01= X1+ Xos0X; = 1(b+0v) :%(\/U%—402+1) and

XQZ %(O’l—b) :%<0'1—\/0'%—40'2)
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Lecture 8

Missed first part, first page on brightspace not readable.

L/K finite separable field extension is SOLVABLE iff Gal( L/ K ) is solvable with L/K Galois
closure of L/ K.

Solvable in radicals iff 3L = L,, 2 L, 1 2...2 Ly = K, where L;,; = L;(«;) where a; root
of z™ — ¢; € Li[x].
(So it is just a field extension by adjoining an extra root for some polynomial in the

field before.
For char(K) = p?0ofa? — x — ¢; € L;[x]if [ L;y1 = L;] = p = char(K) > 0.

Lemma (perminance properties):
If M,/ K is solvable, so is (M Ms) [ M.

Transitivity L/M /K: L/K is solvable iff L/ M and M /K is solvable.
Therefore if M; /K solvable and M,/ K solvable, then M; M,/ K solvable.

Main theorem:
L/K finite separable, then equivalent:

1. L/K solvable
2. L/K solvable in radicals.

Proof: .
Assume for simplicity char(K) | [L : K].

2=1L=L,2...2L=K.
Lii1 = Li(o;) where oi; root of 2™ — ¢; € L;[ X].
L; galois closure of L; /K. By induction assume L /K is solvable.
Show [1”1 /K is solvable, by permanance it sufficies I~/i+1 / [~/Z solvable.
Liyy = Lz( %7 Cn) = Splii(llfm - Ci)
Li(Cy,) s cyclic, therefore abelian in (Z/n;Z)*. By permanance properties for
solvable groups we get Gal(Li,1/L;)is abelian in (Z/nZ)*, therefore solvable.
Also that for any subfield.

1=2 G =Gal(L/K)solvable, where G = G,,, and G; 1> G,_; cyclic fori € {2,...,n}.
By permanence properties: transitivity of being solvable in radicles, implies that
it is sufficient to prove L/K cyclic wherep | [L : K] =: n. Therefore L/ K solvable

1B 2023-2024 (S4349113) Page 24



Advanced Algebraic structures, University of Groningen H.M. (Lenie) Goossens

in radicals.

L/K cyclic, then L(j1,,)/(K (pn)/K)is cyclic. We see that K (u,,)/Lis solvable.
We see that L(i,) = L(pn, &/c) for some d|n, by lecture 7.

We see that L(u,)/K solvable in radicals by transitivity, but we see that K ¢
L ¢ L(py,) hence K/Lis also solvable in radicals (permanence)

Corollary:

n >4, the general equation f, € K(x1,...,2,)[z]is not solvable in radicals.
Proof:

Gal(f,) = S, is solvable iffn < 4. So f,, only solvable ifn < 4.

Only for general equations, specific fields are solvable.

Galois group of polynomials

Lemma:
f e K[X]irreducible, then G : Gal(f) < S, is transitive.
(SoV1<i,j<n,3oceGst.0(i) =)

Lemma:
pprime, G < S, is transitive = 3 p-cycle in G.
If furthermore, G contains transposition (soo (i) = j,o(j) =)= G =5,

Theorem Dedekind:

f € ZpX ] monic and irreducible,p prime s.t. the reduction f € (Z/pZ)[X]has no mul-
tiple factors, sgy? =fif. then Gy := Gal( f) contains permutation of type

(deg(F), dea(Fa), - des(F,)) )

So first permutation is of length deg( f) the second permutation of length deg( f,) and
SO on.

Example:

X5~ X —1 € Z[X]is monic. We see that f mod 5is irreducible. Therefore irre-
ducible in Z[ X ] = Q[X],G = Gal(f) contains a 5-cycle (where 5 = deg(f)). We see
that f = f, - fy € (Z/2Z)[X]. Where f = (X2+ X +1)(X*+ X2+ 1) 50 G contains o =
(12)(345). We see that o3 = (12)3(345)3 = (12), which is a transposition. Therefore
by first lemma of this section, we see that G f ~ .Ss.

Algebraic closure of a field

K is ALGEBRAICALLY CLOSEDiff f € K[X ]\ K (so non-constant) has a root in K iff it
splits completly over K iff V L/ K algebraic (therefore L = K, so does not have proper
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algebraic extensions).

Theorem:

Vfield K, JALGEBRAIC CLOSURE K®8 := K /K
that is an ALGEBRAIC EXTENSION OF Kthat is algebraically closed

it is unique up to non-unique isomorphisms.

Gal(Q/Q) is absolute Galois group of Q which is infinite.

Extra curriculum: Infinite Galois theory

Extra curriculum: Not in exam.

L/K Galois (not necessarily finite), then there is a profinite group Gal(L/K)
Bijection{M : L/M|K} - {H < Gal(L/K)}s.t. M — Gal(L/M)and L* < H.
M /K finite iff Gal(L/M) < Gal(L/K) is open.

Exercise:

Gal(F,/F,) 2 Z = lim Z/nZ
We see that [K : K] < co when

e K =K, since then [K : K] =1, and when

¢ K=RsoK=C=R(i)so[K: K] =2
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Lecture 9

Definition VI.1.1.
Runitary ring, LEFT R MODULO M abelilan group (M, +,0) with ACTION on ring R,
SO

RxM— M, (a,m)~am
s.t.Ya,be R,Ym,n € M it holds that:
RM1 a(m+n)=am+an
RM2 (a+b)m=am+bm
RM3 a(bm) = (ab)m
RM4 Im=m

Right R module defined analogously but with action M x R - M
Examples:

1. K field, then K modulos are same thing as K vector space.
2. n >0, then R"is an Rmod. Note that R° = {0} is also an R-mod.
3. R c Ssubring, then Sisan Rmod If S = R[t] = R[t1,...,t,] then also R— modulo.

4. K field, n > 0then K™is Rmod, where R = K™"and R x K" - K"s.t.(A,x) —
Ax

5. More generally, G = (G, +,0) abelian group, then Endz(G) = {¢ : G - G group hom.} ,in

an ring via (@ +¥)(x) = ¢(x) + ¥ (x) and () () = e(¢(x)). Gis an R—mod
viaRx G - Gs.t. (p,z) » o(z).
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Homomorphism theorem

Ifo: MM — M'is an R— mod homom. Then R/ ker(¢) = im(p) = ¢(m) also R—mod.

M, M’'be R-mods. A mapy : M - M’is an R-MOD HOMOMORPHISM if ¢ is a group
hom. and p(az) = ap(x),Vae R,z e M.

SoHomg(M,M') = {¢ : M — M'which is R-mod-hom}. Note that Endg(M) =
Hompg(M, M).

¢ € Hompg (M, M) is isomorphism if pis bijective.

Example:

1) M, M"abelian groups, then Homgz (M, M") = {¢ : M - M’ group homo.}
2) Kfield, V,V'"a K-vectorspace. p:V — V’is K—mod hom. iff pis a K-linear map.
Remarks:

e v ¢ Hompg(M, M’)is injective iff ker(¢) = {0}

o lfo: M - M': M — M”are R-mod homo. then so is o .

3) Rcommutative ring, a € RmM R-mod, then ¢, € Endg(M ) where
Ya: M —> Mst.z— ax.

If M = R, thenEndg(R) = {p, : a € R} since if, € Endg(R) then ¢ = ¢, wherea =
p(1)sop(x) = p(z-1) =x-o(1) = za

Remark:
Ifp: R— Ris a R-mod hom. then ¢is not necessarily a ring hom.

4) E.g. we see that R = K[t], thenp(f(t)) = tf(t)is not a ring homomorphism,
since p(1) =t # 1, and it is a R-mod hom. We see that ¢ (f(t)) = f(¢?) which is
a ring hom. but not an R-mod-hom.

5) Z[i] - Z*s.t. (a +bi) = (a,b)is aZmod is. Similarly Z[+/2] = Z2as Zmod isom.
But Z[i] ¢ Z[\/2] as rings, since (Z[i])* = {¢1,+i} and Z[v/2]* = {x(1 +/2)" :
n € Z} so we see that the unit groups are of different size, so they can not be
isomorphic (as rings).
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Submodules

Let M be an R—mod. Then aR-SUBMODULO of M is a subgroup N of M s.t. if.x ¢
Nanda e Rthenax e N.
Example

1) ¢ : M - M'is a R-mod-hom., thenker(¢) c Mis a submod, im(¢) c M'is a
submod. We see V.S ¢ M’, that p=1(S)is submod of M.

2) VM K vector spaces, then N ¢ Vis a K-submod iff V'is a lin. subspace.

3) My, My c M submod = M; n Msis a submod.
More generally if I'is a set and M; c M is a submod for alli € I then N M;is a

iel
submod of M.

4) An left R—submod of Ris the same thing as an ideal of R.

5) M-R- mod, I ¢ Rideal, if S ¢ MthenIS = {3 ayja; : a; € I;z; € S, Vj,n > 0} is
j=1

an R- submod.
I'ideal, VaeI,Va;e€l,aa;€l.

Quotient modules

Lemma/definition M is Rmod, N c M is submod then
1. The factor group M /N is an R—mod via RxM /N — M /N s.t. (a,z+N) — ax+N
2. m: M - MNst.z— z+ Nis a surjective R— mod hom.

noet that ifx,z’ € Nthenz + N = 2/ + Nsoax' + N = ax +a(z' —z) + N € ax +
N similarly az + N € ax’ + N. Therefore we see that the function in 1) is well-defined.
The proof now follows using the modulo axioms of both M and N. We know that it
is already a group.

For the second one, we see that it is indeed already a surjective homomorphism from
group theory so we only have to proof that it is a n R-mod-hom.
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Lecture 10

Let Rbe a unitary ring.
Theorem 10.1 (Top VIIL.1.4):

¢ : M - M'R-mod-hom 3!R — mod-hom ¢ : M /ker(p) > M'st.po=pom
ie.p: M/ker(p) > M's.t.x +ker(p) » p(x)

is well-defined R-mod-hom and if ¢ surjecitve M [ ker(y) 2 M’
(Thm 10.1/Top VIL1.4)

Here 7 is canonical surjection
Theorem 10.2:

M R-mod, N, P ¢ M R-submods, then (N + P)/P 2 N/(N n P) (Thm 10.2)

Proof:
Need to show that N n Pis a submod of NV, and Pis a submod of N + P, then have to

find explicit isomorphism.
Theorem 10.3:

P c N c M R-submods
=N /P c M /P submod
=(M/P)/(N/P)=M|N (Thm 10.3)

Example:

V=R%U=R(}). Vi = {o+ Usve V) therefore (5) + U = (})iffy =o'
SoV /U - Rs.t.(y) + U ~ yis an Rmod isom. induced by V' - Rs.t. (y) ~ v.
Lemma 10.4:

V K-vector space,U c V lin. subspace then
dimg(V)=n=VzK"andV 2 K™ ,Ym+n (Lem. 10.4)

Proof:

Fix basis B = (by,...,b,) of Vithenp : V. — K"s.t. ¥ \;ib; = (\;). Is a K vector space.
But # B is uniquely determined by V.

Lemma 10.5

dimg (V) = n,dimg(U) =m, (by,...,by) basis of U, (by, ..., by, b1, - - -, by) basis of V.W = (b1, - ...

mlw : V > V/[Us.t.x — x + Uis isomorphism (Lem. 10.5)

Proof:
1) Hom. clear.
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2) surjective: Letv+UeV/Usothenv—Z/\b Letu-Z)\b elU,w= Z Aib; e W

i=m+1
So thenv =u+wson|y (v) = (v - u)+U—v+U

3) 7|w is injective follows from U NV = {0} since,w +U =w'+U =>w-w' e UnW.
Proposition 10.6

dimg (V) =n,dimg(U) =m = dimg(V/U) =n-m (Prop 10.6)

Proof:

By taking same basis of above, then use (Lem. 10.5), which immediately shows this
proposition.

Corollary

VoeV, IweUweWst.v=u+w

M be R-mod, N, P ¢ M submods, then M is (INNER) DIRECT SUM of P and N written M =
N @ Pif

1. M=N+Pie,VrxeP,dye N,ze Pst.x=y+z.
2. NnP={0}
This means M = N Ps.t.Vre M,3lye N,ze Pst.x =y +z.

I'set,M; R-mod, Vi e I, [T M; ={(x;)ier .St x; € M;,VieI}. This is n R—mod via com-
el

1€
ponentwise addition and scaler multiplication, called the DIRECT PRODUCT of M;.
Example

R" = H Rthen R = {f : I - Rfunctions}

Take RZ>0 = {real sequences}

(OUTER) DIRECT SUM of M, is the R— submod

@ M; = {(x;)ier € [1 M; : x; = 0,V but finitely manyi € I} € [T M;

iel iel i€l

Rmod M is free, if 3] and R mod isomorphisms.t. M * @ RREALLY IMPORTANT
iel

Example:

e [ finite then [T M; = & M;

iel iel
n
o R"=@ Ris free.
i=1

e @ R-={sequences(a,)ns0s.t.-3IN>0:a,=0,Yn> N}

TZEZZo
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e R[t]is free, since we can map Y a,t" ~ (a,)so then we have[t] > @ R which
TLEZEO

is isomorphic, hence free.
e IV a K-vector space, U c V linear subspace, thenV 2 U@V /U.

e M an R, mod, all M; ¢ M submods, s.t. M is the inner direct sum of all M; then M is
isom. to the outer sum of the M,;.

e All K vector spaces are free.

o Z[2Zis a freeZ/2Zmod. But not free asZ-mod. This is because M is a
free Z—mod, then #M =1, if M = {0} or #M = oo

o M =7Z@®7Z/27is not free as Z— mod, since 2(0,1) = (0,0) but (0,1) # (0,0) but Az €
Z" of order 2.

o Z[6Z =727 x 7|37 as Z— mod, but also as Z/6Z— mods.

REMARK:
If d|N then Z/dZis Z| NZ-modulo. This is because Z/dZ = (Z/NZ)[d(Z|nZ).

So Chinese remainder theorem: IfN = []p;e’ wherep,; prime, e; > OthenZ/nZ =
D Z/(p;’)Z as Z— mods and as Z/nZ-mods.

Theorem 10.6
Rcomm. ring, m,n > 0.thenR" 2 R™ =>n=m (Thm. 10.6)

Proof:

Recall R = ZthenZ™m 2 Z" = (Z]22)™ = (Z]2Z)™ = m =n

In general. Choose maximal ideaJ ¢ R. Then R/J = Kis a field. Suppose exists
isom.p : R™ — Rmthenp(J™) c R"is a submod so there exitss a K-vectorspace
isomorphism R"/o(J™) =~ R™/R" ~ (R/J)™ = K. We getdimg = m. This is be-
cause R*/p(J™) = (S)where S = {e; + o(J™) : i € {1,...,n}}. We see that #S =
nson >m. Similarly we get m > nsom =n.

For M free say M = R™ we call n the RANK of M (sork(M) =n)

M is an Rmod,S ¢ M subset. Then S'is LINEAR INDEP/ of V(\;)scs where A\ € Rs.t. VA, #

Owe have > A;s=0then all A, = 0.
seS

S'is GENERATING SET of M if M = (S) = { ¥ Assfinite sums}.
seS

Sis an R-BASISif S'is lin. indep, and a generating set.
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M iS FINITELY GENERATED if M = (S) for some S c M finite.
M iscycrLicif M = (S) where #S = 1.

Lemma 10.7
M R-mod
1)S ¢ M basis < Vo e M,3!(\s)ses 1 = Z AsS
2) M has basis < M free -
Proof:

Part 1: Sim. as LA
Part 2: If M is free, sop: M =@ R > (e;);es then (p~1(e;)) is a basis.
iel
If (8i)ier = S ¢ M basis, thenp : M - @ Rs.t. s; — e;.5till have to show isomorphism.
1€l
Example:
M = R = Z = (1) where{1}is basis, but we see that M = (2,3)sincel € (2,3).
If S = {2,3} we see that (-3) -2 +2-3 = 0so not lin. indep. soSis not a basisand
no subset of Sissince 2 ¢ (3),3 ¢ (2).

Lemma 10.8:
Rcomm. ring I € Rideal
a)I cyclic as R — mod < [ principal
b) Rdomain then [ free < I principal (10.8)
Proof:

a) follows by definition of principal ideal and cyclic.

b) «<if, I is principal, then I = Rxrso R — I s.t.a = axis an isomorphism. So [ is free.
= suppose [ is free, then ifrk(I) > 1,32y, 25 € I'lin. indep. And I 2 R*() but zyx; -
x129 = 0which is a contradictionsork(/) = 1, hence I = Rz is principal.
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Lecture 11
Rring, M; an R—mod for alli € I then
B M; = {(x;)ier s xi € My, Viel,x; =0,for all but fin. manyi}
iel
R-mod M isFREEiIfIIst. M =D R
iel
M is free iff M has a basis (a lin independent generating set)
R domain, I ¢ Rideal, then I free iff I principal.

Theorem 11.1:

Rprincipal ideal domain (PID), let M free R-mod then any R — submod of M is free
(Thm 11.1)

Proof:
See conrad, all most the same for R = Z (group theory)

Example:

e R=7[v-5]and M = (2,-1 ++/-5) c Rwhich is non-principal ideal, so not free
as R—mod. But M @ M = R?is free.

e R={feC>(R): f(z+27m)=f(x)}is a ring.
M = {m e C°(R) : m(z +27) = -m(x)}is a module over RviaR x M —
M, (f,m)~ fmwhere(fm)(x)=f(z)m(z).
Claim:

1. M@ M = R2.
Let co(x) = cos(%) ,So(x) = sin(%). Then sg,co € M. Letv: R2 > M @ M,

s.t.(f,9) ~ A(ﬁ), where A = ( @ SO)

—So Co
We see that ¢ is an R— mod hom.

A1l= (CO _Cso)andm,n e M = mneR.
0

S0
vt M@®M - R?st.(m,n) » A! (7:) sot has an inverse, sois an

isomorphism.

2. M is not free.
Exercise VI.7.3. This says M ~ I c Rideal, and
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I = ker(evg) = {f € R: f(0) = 0}, It suffices to show that AR- mod iso-
morphism ¢ : R - M. Suppose therefore there exists such ay. Letg :=
©(1) € M. Leta € [0,27]s.t.g(a) = 0. Sinceypsurj, 3f € Rs.t.o(f) =
cq where ¢, () := cos(‘”Q;“). We see hterfore that o(f) = fo(1) = fg. So
then0 = f(a)g(a) = ca(a) = cos(0) = 1. But we see that 0 # 1so ¢is not sur-
jective, so ¢is not a R-mod isomorphism. Therefore there does not exists
an R-mod isomorphism, hence we are done?

Universal property (UP) of direct sums
Theorem 11.2 (UP):
Rring, M; Rrmod Vi€ [ :1;: M; > @ M; = Ns.t. ;= (24,055) jer
iel

This is an R-mod-hom, then following properties:

a)The pair (N;, (¢;)qer) satisfies UP:V (M, (¢;)ier s.t. M R-mod, ¢; : M; - M R-mod hom
= Al e Homr(N, M) :por; =, Viel
b) Let (D, (Ji)ier), D R-mod, j; : M; - Dbe R-mod hom.& satisfy a),
i.e. V(M,(¢;)ier), A : Homg(D, M)s.t.¢poj;=p;,Viel = D= N
(Thm 11.2/UP)
Proof:
Part a Note thatz = (7;)ie; € N we havew = ¥ 1;(7;) < (»).
Consider (M, (¢;)ier) and supp Jp € HZ)EIInR(N,M) st.pou =@, Viel Then
forz = (z;)ic; € N,we havep(z) = Z}@(Lz(xz)) = g%(%) sois already

1€

uniquely determined by (M, (¢;)icr)
So this proofs both uniqueness, and ¢ : N - M s.t.x = (x;)ie = Y pi(x;) shows
existence. Since pis an R—mod hom, and ¢ o ¢; = ¢;. ZEI

Part b UP for D, with M = N,¢; = ¢;. So3!Y e Homg(D,N)s.t.1; =19 oj; < 1.
UP for N with M = D,¢; = j;,s0 3¢ €e Hompg(N, D) s.t. j; = pou;.
We show that 1, p are both isomorphisms, and to be more explicit, they are
eachothers inverses.; 1 oj;=(1op)or. Sowe show that oy =id.
UP for N with M-N,and p; = ¢;, then 3¢ ¢ Hompg(N, N)s.t. pot; = ¢;for allie I.
This holds for ¢ = idy, and only for this one due to uniqueness. But we saw
that it also hold for (¢ o ). Therefore we see that ¢ =1 o ¢ =idy. By similair
reasoning,p o 1) = idp. Therefore p, 1) are isom.
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Modules over PID’s

R comm. ring, M- R-mod. Then:
x € M TorsioNiff Ja € R~ {0} s.t.ax = 0.

For R = Z we see z torsion iff ord(x) < oo.
Tor(M) := Torg(M) = {z € M torsion}

Example:
1. V a K- vector space,therefore Tor(V') = {0}
2. M=7",R=17Z, thenTor(Z") = {0}
3. R=7Z,M =7/6Zthen Tor(M) = M since 6z = 0,V € M.
4. R=M =7/6ZthenTor(M) ={0,2,3,4}

5. M fin. abel. group, then M 2 Z/d,Zx. . .xZ]d, Zs.t.,d1|ds| . . . |d,, = Torz M = M.
If M is finitely generated, then we see M = Z" x Z]d\Z x ... x Z]d,Zforr > 0.
Then Tor(M) 2 Z|d\Z x ... x Z]d,Z

Ann(M) = Anng(M) = {a € R : ax = 0,Yx € M} this is called ANNIHILATOR of M
(Note that Tor(M) ¢ M, Ann(M) € R.)

Lemma 11.3

1) Rintegral domain,then Torg (M) is submodule of M
2) Ann(M)is an ideal of R (Lem 11.3)

Proof:
Tutorial

t
Go back to example 5, so T finite Z— mod, then T =~ @ Z/d;,Z. But T == @ A; where A; is
i=1

t
the p; Sylow subgroup. S.t. #71" = [] p;* where p; prime and e; > 0.
i=1
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Lecture 12
If Ann(M) # {0} then Tor(M) = M.

Let Rbe PID
Theorem 12.1:

t
TR-mod s.t. Ann(M) # {0}, writeh € Ann(M) ~ {0} ash = [ [ p§* with
i=1

p; € Rprime and non-associated, e; > 0set Ty, ; := {x € T : p{'z = 0}
1) T}, ;submod of T, Vi
2) Ty, ={xeT:pix =0for somee >0} =T (p;)
DT =T(p) B DT ()
4) Ann(M) = hRandp € Rprime thenT'(p) = {0} < p| h (Thm 12.1)

Proof:
1) follows from definition

2) Ty, c T(p;)is logic. Now setgq; = pi € R. Therefore (¢;,p;) = 1. Letxz € T'(p;).

We know p¢z = 0for somee > 0. " Since (¢i,pi) = 1we see that (¢;,p¢) = 1, so
therefore by Beizout, 1 = rp§ + sq; forr,s € R. So we get p{'z = p{* (rpfx + sq;x) =
piig;sx. Use that pi'q; = htherefore we getpiiz = hsx = 0so we haveT(p;) c
Thﬂ' S0 T(pi) = Th,i

3) Writel = s;q;+...+5.q;. Letx € T. Want to show: Alx; € T'(p;)Vi, s.t.x = z1+. . .+
Let z; = xs;q; thenx = x1 + ... + x;. Sincep{'z; = hwso =0,s0x; € T(p;).
Now we have to show it is unique. Suff. to show ify; +... +y; = Ofory; «
T'(p;) then ally; = 0.
As in 2) let 1 = r1p¢ + sq;, where pSy; = 0, theny; = rpSy; + sq;y; = Sq;y;.
Ify, +...+y =0, theny; = sqy; = —s 21: qy; = 0. Ift # jthenqy; = sy;qq; =

VE]

0 because h|g;q;. So we gety; = 0for alli.

4) Let Ann(7T) = hR. SupposeT(p) = {0}. Assumep|h, leth = h'p¢s.t.p | h. Va €
T we haveO = hx = h'péx, soh'z € T(p) = {0}. Soh’ € Ann(T'), which is a con-
tradiction ash' ¢ hR. SoT'(p) = {0} =p/ h.

Supposep | hleth = ﬁpf ThereforeT = T(p1)®...®T(p;). Noteph e
i=1
Ann(T). Therefore T =T (p1)®... ®T(p:) ®T(p), soT(p) = {0}
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Theorem 12.2:

RPID, M Fin. Gen. R — mod. LetT = Tor(M)
1) M = FE@ T where F = M /T free and rank(F') uniq. determ. by M
9)T % {0} then T = N, ... @ N,, Ni = R/d; Rwithd,|dy . .. |ds and
N;submodules, d; € R~ R* uniq. determ up to integers by multiples of R*
3)UT # {0}, thenT =T (p1) P ... P T (p:) whereps,...,p; € Rprimes, s.t.
T(p;) # {0}, where p; uniquely determ. by M up to mult. by R* (12.2)

Theorem 12.2 is called the structure theorem for finitely generated modules over PID
Proof:

1) See Conrad/GT
2) See Conrad/GT

3) M finitely generated, then T finitely generated. SayT = (s1,...,S,). Leth; € R\
{0} s.t. his; =9. Thenh =[] h; € Ann(7T") now apply (Thm 12.1)

Linear algebra over fields (normal forms of matrices)
K field, V finite dimensional K-vector sapce, Let ¢ € Endg (V') = {f : V - Vlinear} thenev,, :
K[t] - Endg(V)s.t. Yaite ¥ a;p'.is a ring hom. and a K-vector space.

Lemma 12.3:

1) K[p] = ev ([K(t)]) com. subring of End (V)
2) Vis K[p]mod via K[@] xV = Vs.t. (Y a0’  x) = Y a;0' ()
3)VisaK[t]mod viaK[t] xV = Vst.(f,z) »ev,(f) -z = (evy(f)(x))
4) I'monicm,, € K[t]s.t. K[¢] = K[t]/(m)
5) my,|K,, char pol of (Lem. 12.3)
Proof:
1),2),3) Tutorial

4) K|[t]PID, therefore Ker(ev,,) prime. Letm, unique monic gen. Then K[t]/(m,,) =
K]

5) Cayley-Hamilton
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Theorem 12.4

t
Write m,, = H h{', e; > 0and h;irr., monic, not ass.
i=1

1) Vi ={v e V|hi(¢)(v) =0}is K[¢] - &K[t] — submond of V'
2) V; # {0} Viand V; Generalized eigenspaces
NV=ViD...DV, (12.4)

Proof:
K[t]PID, we generateker(ev,) = AnngV # {0}. Then apply (Thm 12.1) withh =
mys0Th, = Vi

Remark: Since V;is a K[p]mod have p(V;) ¢ V;. This andV = Vi @...H V;implies
that can deal with the V; separable

Example
=K, H(t Ai) with \; distinct.
Vi = {v eV (t Ai) (@) (v) =0} ={v eV :(p-N\id,)(v) = 0} which is the eigenspace
of \;.
dimV; =1 =V, = Kz, for somex; € V; thereforeV = Kz;: @ ... & Kz, then the matrix

of pw.r.t. to the basis B denoted by Mp(y) satisfy Mp(p) = diag(\i, ..., \,) where
B=(x1,...,2,).

To gen. this, find basis for V using bases of V; s.t. matrix of B; ¢|,, wrt B; is simple. By

MB1(90|U1)
remark above, if we set B = (B4, ..., B;), then Mp(p) = which
MBt(()O|Ut)
is a block matrix.
Example:
1 -4 0 2 40
V+R3, A= 1 -3 0 |,p(z)Az, then ,(t) = (t+1)3. SothenA+l;=| 1 -2 0=
1 2 -1 1 2 0

N #0byN2=0. SoM, = (t+1)*s0V, = Ker()p +idy)?)
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Theorem 12.5:

supp. my, = (t - )\)2 Ne K

1) = Nid +¢s.t.¢? =
2)3basis Bof V s.t. MB(@) upp triang. matrix with only A’s on diagonal ~ (12.5)

Proof:
1) 0=my,(p) = (¢ - Aidy)?. Definet = ¢ - Xidy

2) Look at first, W; = ker(¢?) thereforeW; ¢ Wy c ... ¢ W, = V. Construct ba-
sis B of V', so choose basis By of W, extend to basis By of W5 and so on. Use ¢)(W;) c
W;_1 to show Mg (1)) is upper triangular with zeros on diagonal, then use 1)

Example:

1 -4 0
A—(l —4 o), and N = A+ I3, N2 = 0. Lete) = N. W, ¢ W, = V where W,

1 2 -1
. Since Wy =V, can take B = << ) ( ),(é» ThenN(é)z
0

((-(h) O

ker(N; 0
) 1(é) Therefore Mp(v) = (08;1):MB(<,0)—<_8

(1)-1(

1
071
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Lecture 13

Exactness

Rring
A sequence

oML NS P ofR- mod homomorphisms (13.1)

-)is exact in N ifim(f) = ker(g)

-)is exact if it’s exact everywhere

Remark:

(13.1)exact in N = g o f = 0but not necessarily other way around.
Example:

1. {0} > N % Ps.t.0 - 0is exact iff g is injective.

2. ML N 5 0withz o 0iff fis surjective.

3. For all R—mods M, P
0->M35MBP S P> 0st.y:ae (2,0),m: (z,y) - yis always exact.
Since 7y is inj, myis surj. Furthermoreker(ms) = {(x,y) e M@ P:y =0} =imy

4. For all R-mod hom.g: N - Pwe get
0 - ker(g) - N % Im(g) - 0. Note that we can writeim(g) = N/ker(g). So
0 - ker(g) > N5 N/ker(g) » 0s.t.m:z = g(x) +ker(g).

SHORT EXACT SEQUENCE (SES) of R—mods is an exact sequence() - M - N - P —
0.

Remark:

1) is shorter then the definition of SES, but it is not an SES.
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Lemma 13.2:

VSESO - M - N - P — Oexists a comm. diagram

= f |lid v =l h
0 - ker(9) > N 5 N/ker(g) - 0
hinverse of N/ker(g) - Im(g),z + ker(g) ~ g(x) (Lem 13.2)

Proof:

We need to show both squares are commutative. Commutative is trivial. Note that
sinceim( f) = ker(gand f injective (follows from example 1), we have that f : M —
ker(g)is an isomorphism.

For the second square, Ya € N we need that w(x) = h(g(z)).

Since hinverse of N [ker(g) — im(g) we see that h(g(z)) = x + ker(g) = n(x)

his surjective, since N/ ker(G) — im(g) is isomorphism, but we need P - N/ ker(g) to
be a well-def. isomorphism, which follows from that g is surjective.

Homomorphisms

Recall: M, N are R— mods, then Homg (M, N) = {f : M - N, Rmod-hom}
Lemma 13.3:

M, N are R — mods

1 Hompg(M, N)subgroup of Homz (M, N) with group law addition

2 Endg(M) :=Hompg(M, M)is subring of End, (M) with composition (Lem 13.3)

Examples:

1. K field then Homg (K™, K™) 2 KM

2. n>2,feHomg(Z/nZ,Z) forx € ZletT := x mod n. Therefore f(z) = z- f(1).
SO0 = f(0) = f(m) =nf(1). This last multiplication is multiplication in Z which
has no zero divisors, so f(Z) = 0for all x € Z therefore Homz(Z/nZ,7) = {0}.

3. Rcomm ring, M R-mod. Forxe Mlet f,: R - Ms.t.a~ ax.
Claim: ¢ : M - Hompg(R, M)s.t.z — fris an R—mod isom.
Proof:

e f. e Homg(R, M) which is easy.
o p(x+y)=p(x)+p(y)which is clear.
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e To show pis an R-mod hom, still need to show Vb e R,x € M : p(bx) =
bp(x). Note that o(bx) = fr and bp(z) = bf,.
Leta € Rthen fy,.(a) = abrandbf,(a) = bax but since R commutative, we
see that abx = bax so therefore indeed fy, = bf,. Sop(bx) = bp(x).

e pinjective. Let x € M~{0} then p(z)(1) = f,(1) = x # 0 therefore ¢ injective.

e psurjective. Let f € Homg(R, M),Va € R,o(f(1))(a) = f(1) - asince f R-
mod hom. wew see that this is equal to f(a). So f = ¢(f(1)) so g surjective.

Remark:

In book ¢! = evy : Homg(R, M) - M, f — f(1).
Remark:

We haven’t said that Homg(R, M) is an R-modulo.

Lemma 13.4:
Hompg(M, N)is an R — mod if R commutative (Lem 13.4)

Proof:

When is Homg (M, N) an R—mod? via R x Homg(M, N) - Homg(M, N)s.t.(a, f) —
afwhere (af)(x) = af(x). To be this enough, we needg = af : M - Nis an R—mod
hom. Letb € R,z € M, theng(bzx) = (af)(bzx) = af(bx) = abf(x) bg(x) = baf(z).
These are equal if Ris commutative.

From now one, we assume that R is commutative ring.

For R— mod A we define Hompg( A, -) takes an R— mod M to the R—— mod Hompg (A, M) and
it takes R—mod f € Homg(M, N) to f. € Homg(Hompg(A, M), Homg(A, N)) the pUSH
FORWARD of f.

Ifp:A—- Mand f: M — Nthen f,p=foqp.

if o e Homp(A, M) then f.p € Homg(A, N)

Claim:
f+ :Hompg(A, M) - Hompg(A, N)is an R—mod hom. soa € R,z € Athen ¢ € Homg(A, M).
filap)(z) = f o (ap)(z) = f(p(az)) = flap(x)) = f(p(z)) = alfp) ()

Question:
Let f e Homg (M, N) when is f, injective/surjective?
Surjective: If fis not surjective, then f, is not surjective.

1B 2023-2024 (S4349113) Page 43



Advanced Algebraic structures, University of Groningen H.M. (Lenie) Goossens

Example:
R=7Z=M,N=7/27 = Athen f =7 :Z - Z[2Zs.t.x » x mod 2is surjective.
Then f, is not surjective. f,: Homy : (Z/27) - Homy(Z/27Z,7]27).
But we see that Homgz(Z/2Z) = 0 and Homyz(Z/27,7,/27) = Z]2Z an dwe seee that 0 —
Z/27Zis not surjective, since sets are different size.
Injective: Let f € Homg(M, N) injective,suppose ¢ € ker f, so f(¢(z)) =0,Vz € M sop(x) =
0,Vxz e M, so f, is injective.

Theorem 13.5:

Let0O - M ER N % Pto be exact sequence of R-mod-homs
= 0 > Hompg(A, M) EiN Hompg(A,n) g, Hompg(A, P)is exact (Thm 13.5)

Proof:

Already discussed maps well-defined.

Exactness in Hompg(A, M) is exact, since f, is injective. (since f is injective since first
line exact). Hompg(A, N)exact requires Im( f,) = ker(g.)

Let ¢ € im(f,)sov = f.pfor some p € Homg(A, M). Therefore g, (1) = go f o p. Note
that g o f = Osince the first line is exact, therefore g,1) = 0so € ker(g,).

Now let 8 € ker(g.). Thengo S(x) = 0for allz € M soIm(f) c ker(g). Takeh := f=1:
imf - M. IF we draw the scheme, we see that o = h o #so therefore 5= foa = f,a €

im(f.)
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Lecture 14

Split exact sequences

Example:
1.0-MS5M@®P S P—0wherety : x> (2,0)and my : (2,y) ~ y.

A SES1s spriT/spLITS if 3an R—mod iso 0N SM@®P. St.

0> M L N Lp o o0
| =) 6 | (a.14)
0 - M &% MeP & P - 0
commutes
Examples:

1. Every SES of K- vector spaces splits.

2. Nonexample: 0 — Z Blzx Z,/27:to0 where

[2] means that x — 2z and 7 : = xmod2is a non-split. Since if it is a split, then
must have that the middle term Z must be isomorphic to Z @ Z/2Z since 2(0, 1) =

(0,0), so the right group has an element of order 2, while the LHS does not
have an element of order 2.

Remark:
SES splitsthen N 2 M @ P but ... see conrad splitting of.. Example 1.4.
For splittness, it’s important and necessary that the maps in

0O>-M->MEPP->P-0 (Form 14.1)

are ¢; and o

If we have (Form 14.1) we see that we can also notice that myous = idp and my 011 = id .
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14.2 (Splitting) Lemma:

Let0 > ML NS PooandP N, N 2, MSES Of R-mods, then following equiv.
1) above line splits
2) 3h e Homg(P,N)s.t.go h =idp
3)3j e Homg(N,M)s.t.jo f=idy

call h,j splittings of the line (Lem 14.2)

Proof:

2 =1 Suppose2),Letp: M@ P - Ns.t.(x,y) — f(x)+h(y) then p € Homr(M @ P, N).
Claim:

0 - M &% MeP B P - 0
[ Lo |

0> ML N L p S0

Commutes, sop ot; = fandmy = g o psince then we have g(f(z) + h(y)) =
g(f(x))+g(h(y)) = 0+y. where the 0 follows from that N is exact, and the y follows
from the condition that go h =idp.

It follows that ¢ is an isomorphism by exercise 2 on HW sheet 4, therfore we get
indeed 1) By usingf := ¢!

1 =2 Suppose3d : N - M @ Pisomorphism s.t.(a.14) commutes. defineh : P —
Ns.t.y > 07 (e2(y)) therefore goh(y) = g(071(0,y)) by commutative of diagram,

mp 0 6 = gtherefore g(071(0,y)) = ma(0(07"(t2(y)))) — ma(t2(y)) = yso we get
indeed g o h =idp

Note that 1 = 3is similair tol = 2and 3 = 11is similair to2 = 1.
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Lemma 14.3:

supp. NV ER PP " N are R-mod-homs s..t. goh=1idp Then
1) g surjective
2)0 - ker(g) > N % P - 0is exact
3) N zker(g) @ P = ker(g) Pim(g) (Lem 14.3)

We call h a section of g.
Proof:

1. Vye P,3zeYs.t.goh(z) = ywe see that we can takez =y. So3dz € Ns.t.g(x) =
yso gis indeed surjective (Wherez = h(y))

2. By 1, and that there is always an SES by the image of g.
3. zby (Lem 14.2) from2 = 1, =by N =im(g)

Projective modules

P
Lh ,withh €e Homg (P, N)&row exact (cond 14.4)
ML N S0

If all (cond 14.4) holds, then P is PROJECTIVEif there 3h e Homp(P, M)s.t.h=foh
(soh = f.(h)soh eimf,), see last picture.

14.5 Proposition:
F free R — mod = F proj (Prop 14.5)

Proof:

Ffree, so F' 2 @ R. Since F free, fix basis (b;) of F. Consider diagram like (cond 14.4)
1el

, Vioe I,3r; € Mst.h(b;) = f(x;). Defineh(b;) = h(b;). Now extend hlinearly

toh €e Homg(F, M) then foh = h.

Extend linearly: Vz € F,3!(\;); for alli € Rs.t.z = ¥, \;b;. Define ﬁ(z) = Zx\iﬁ(bi).
iel
Here we have finitely many \; nonzero. (So zis finite sum).
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Lemma 14.6
VR - mod M, 3free R — mod F&x € Hompg(F, M) surjective, so we have F 5 M — 0
(Lem 14.6)
Proof:
) ) ) lifx=y
F = @ Ris free with basis (e;) s.t.z € M. Where (e;), = 0yy = .
zeM 0 otherwise

Then definew(ex) = zand extend linearly, and we can observe that this7is indeed
surjective.

Note that if F =@ RifI ={1,2,3}then F = RO RD R = R3.

iel

Therefore F = @ R

xeM

= RIM| if | M| < oo
submod of RNif [ M| = #N
Theorem 14.7:

following equivalent

1) P projective
2) every SES with P at the end splits
3) Ifree R — mod F&an R - mod Qs.t.F = PP Q (Thm 14.7)

Proof:

1 = 2 By Lemma from L13, 2 follows from following claim: Every SES0 — ker(g) —
g .
N = P — Osplits.
Proof of claim:

P
Consider }idp then P projective, implies3h : P - Ns.t.goh =
N % P 50
id,. Then by splitting Lemma, we get 2.

2 = 3 Suppose 2, by (Lem 14.6), 3 free F and SES0 — ker(7) - F 5 P - 0. Then F =
ker(7) @ P, which is even more precies then part 3).

3 =1 . Suppose 3), Let F 2 P@ Q, be free consider (cond 14.4), then since F projective,
we can repace P by P+ (), so we see that I :P®Q —~ M. But we wanth: P —
M. Therefore use thate; : P - P@Q and h' P& — Mthen we can de-
fineh:=h'o L.
Now observe f o h= fo h'o 11 =hom ot =hoidpso this implies 1)
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Exercise:
1. Every K- vector space is projective.

2. RPID = every projective R—mod is free, by 3 of (Thm 14.7), since every sub-
mod of a free R—mod is free.

3. Claim: Z/2Zis not a free Z/6Z—-mod. This is because a free modulo of Z/67Zis
of order infinity or a factor of 6.
But it is proj Z/6Z since Z[6Z = 7|27, x .| 3Z.. Since Z[6Zis a free Z/6Z modulo,
we can write this asZ/2Z @ Z/37Z.

4. If the modulo on the right is R, then the sequence must split.
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Lecture 15

R commutative ring
Extra curriculum:

Fix R—mod A. Then any R—mod, M gives that Homg(A, M) isan R ;mod.
St.f:M—->N,p:A—- Mand f,p=fop:A— Nis associative diagram.

A CATEGORY C consists of objects (ob(C)), morphisms,(mor(C) between objects

A ER Bwhere A, B €C.

MORPHISM: or arrows, that has domains and codomains.

In this case, write f € hom(A, B) (This does not imply that fis a homomorphisms,
only a morphism from A to B.)

Fmap o : Hom(A, B) x Hom(B,C) - Hom(A, C) with (f,g) = go f
This is:

e ois associative

e VAeob(C),Tids € hom(A, A)s.t.Vf e Hom(A, B) we haveidgo f = f = foida

Example:
C Ob(C) mor(C)
set sets maps
R-mod R-mods R-mod-homs
Group Groups Group homomorphisms
Top | Topology spaces cont. functions
E Sets Relations

Rel, stands for all sets with relations (For example Hom(A, B) = {R c A x B})
RcAxB,ScBxS=SoR={(a,c)e AxC:3be B:(a,b) e R&(b,c) e S}

FUNCTOR F': C; - Cyis a "morphism between categories”, i.e.,
e F(ob(Cy)) cob(Cy)
e F(mor(C;)) c mor(Cy)
o F(idy) =idp(A)

F(f)o F(g)call F covariant or
F(g)o F(f)call F contravariant

°F(f°g):{
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Example:

Forgetful functor R-mod —set s.t.
,M R-mod+~ M as a setand f € Homg(A, B) » f: A - Bas map.
Also works for example for groups, Top
This function is Covariant. -

Hom-functor Fix Rmod As.t. Hompg(A, -) : R-mod - R-mods.t. M - Hompg(A, M) and
for f e Homg(M, N) we have f — f, with f, € Homg(Hompg(A, M), Homg(A, N))

A function F' R-mod - R-mod is LEFT EXACT if for all exact sequences

0> ML NS Palso the sequence 0 — F'(M) 0, F(N) o), F(P)is exact.

A function F' R-mod - R-mod is LEFT EXACT if for all exact sequences

ML N P oalso the sequence F'(M) MF(N) MF(P) — 01is exact.

FisExAcTif it is left and right exact.

Recall:Homp (A, -) is left exact, but in general not right exact.

Theorem 15.1:
AR-mod, then Hompg (A, -)is right exact iff A projective (Thm 15.1)

Proof < ;
Suppose A projective, Let M = N 2, P > 0. We want that

T:Hompg(A, M) LN Homp (A, N) £ Hompg(A, P) - 0is exact.
A
g is surjective: Let p € Hompg(A, P). Consider v 3h o so A projective

N L P 50
hence 3h € Homg(A, N)s.t. ¢ = go h = g.h (so found pre-image namely h)

imf, c ker(g. follows fromgo f =0
ker(g. cim(f,) Let € ker(g.)i.e.got =0s0

,im1) c ker(g), but we saw that ker(g) = imf, since original sequence is exact.

Consider v 3h since A projective, 3h € Homg(A, M)s.t. ¢ =
ML om() > 0
foh=f.hsoyeimf,.

Therefore we see that tis exact.
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Proof =

A
Suppose A is not projective, = 3 diagram N7 s.t. Ah e Hompg (A, N)
9
N - P =0
withg = go h. ie. ¢ € Homg(A,P) ~ im(g,)soker(g) - N 5% P 5 0is exact
but Hompz (A, ker(g)) = Hompz (A, N) £ Homp(A, P) - 0is not exact.

Snake Lemma:

For v e Hompg(A, A’), def. coker(a) = A’/im(a) = A'Ja(A)

Consider comm. diagram of R-mod-homs, with exact rows (black), then 3 exact se-
quence (blue)

ker(a) ER ker(8) 5 ker(y)

b Lt Lt
0o- 4 L B & ¢ S

Lo B el and ¢ : ker(y) — coker(a)
o> A L o L o L

T I x

coker(a) L coker(ﬁ) g_’) coker(v)

Where f : ker(a) — ker(3)is well defined, sincex € ker(a) = B(f(z)) = f'(a(x)) =
0 since commutative, so f(x) € ker ()

Similarly g : ker(8) — ker(7y) is well-defined.

fly+a(A)) = f'(y) + B(B)is well-defined, since ify € a(A)sayy = ax)forz € A,
then f(y) = B(F(x)) € B(B).

Similarly ¢’ is well-defined.

dis called connecting homomorphism,d : ker(y) — coker(«)forc € ker(7y),there ex-
istsb € Bs.t. g(b) = csince gis surjective ( g is not necessarily surjective).

Since c € ker(7y), we see that ¢’(8(b)) = 0, by commutative diagram, so 5(b) € ker(g’).
Since exactness, we see that ker(g’) =im(f’)soda’ € As.t. 5(b) = f'(a’).

Defined(c) =m(a’) = a’ + a(A)

J is well-defined, since f”is injective, we see there exists unique a’ € A’s.t. f'(a’) = B(b).
Furthermore we must havedindep. of choice ofb. Supposeb; € Bs.t.]g(b) = c.
Thereforeb — by € ker(g),s0,b — by € im(f). Therefore exists uniquea € As.t. f(a) =
b-0b. Sop(b) - pB(b1) = f'(a(a)), so ifa] € A’s.t. f'(a}) = B(by). Thena' —a) €
a(A)som(a’) =n(a}) , so indep. of choices of b.

Complete Proof in Top’s notes.
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R commutative ring, M, N, S R-mods, thenb: M x N - Sis BILINEAR, if
Vm e M,Vn e N, we have that M - Ss.t.z — b(z,n) and N - Ss.t.y — b(m,y) are R-
mod-homs.
Examples:

Dot product

Matrix multiplication

Scalar products
e RxM - Mst.(a,m)~a-m
A TENSOR PRODUCT of M&N (over R)is a pair (T, ), where T'is an R— and

f: M x N - T bilinear, s.t. V pairs (.S, b) where S'is an R— mod and
b

MxS — S
b: M x N — Shilinear, then3!f € Homg(7,S)st. |~ f is a commutative
T

diagram

Catch-up session 04-04-2024

Universal property Tensor products:
Hompg_ moa(M ®r N, L) = Bilin(M x N, L).

For example: R®r M = M
Note that Tensor product was extra curriculum.

Torg(M)={zeM:30#reR:rx=0}
Torz(Z @ Z]27) =0 & Z|2Z
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NEED TO REMEMBER

L/K SEPERABLEIff Va € L, minpol(«) has no multiple roots in Spl (minpol(«a))
L/K NORMALiff Vo € L, minpol(«) splits completely into linear terms over L.

Tor(M):={xeM:3aec R~{0}:ax =0}
Amm(M):={aeR:ax=0,Yre M}
Ann(M) # {0} = Tor(M) = M.

Equivalent:

1. P projective.
P

P projective if we have Lh there exists h € Homp(P, M) : h = foh.
m L N -0

2. Every SES with P at the end, splits:

SES: 0> ML NZ P 0s.t.im(f) = ker(g)
SES Splits, if 30 € Hom (N, M @& P) isomorphic s.t.
0> M L N L p o
| Lo I

™ ™2

0O - M - MeP —- P —- 0

3. Exists free Rmod F, Rmod @s.t. F = P& Q.

Fis free Rmod s.t.3I/s.t. F = @ R.
iel

Note that F' free = F torsion free.
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